1
|
In vitro activity of selected natural products against Eimeria tenella sporozoites using reproduction inhibition assay. Parasitol Res 2021; 121:335-344. [PMID: 34757499 DOI: 10.1007/s00436-021-07360-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
Eimeria tenella is the causative agent of cecal coccidiosis in poultry characterized by weight loss, hemorrhagic diarrhea, and high mortality rates. Research into herbal candidates with possible anticoccidial activity has increased lately. As an alternative to animal experiments, an in vitro reproduction inhibition assay (RIA) was previously designed to determine the sensitivity of E. tenella isolates against ionophores. In this study, the RIA was used to test the anticoccidial activity of nutmeg oil, cinnamon oil, and glabridin. The concentration of nutmeg oil used in this study ranged between 1.1 and 139.1 μg/ml. Nutmeg oil exhibited a moderate in vitro inhibitory activity ranging from 35.5 to 49.5%. In contrast, no inhibitory effect was detected when incubating E. tenella sporozoites for 24 h with cinnamon oil at concentrations of 0.3 to 80.5 μg/ml. Glabridin (0.08-41.7 μg/ml) prevented the replication of sporozoites at a rate of 14.1 to 81.7% of inhibition. The calculated minimum concentrations of glabridin needed to inhibit parasite replication by 75%, 50%, and 30% (MIC75, MIC50, and MIC30) were 21.43 μg/ml, 5.28 μg/ml, and 0.96 μg/ml, respectively. Further studies to assess the in vitro efficacy of glabridin were performed by studying mRNA gene expression of stress-induced protein genes (HSP-70, NADPH, and EtPP5) after exposure of E. tenella sporozoites to glabridin at MIC75 for 0.5 h, 1 h, 2 h, and 4 h (a time-dependent experiment). Moreover, a dose-dependent experiment was performed using glabridin at a concentration matching MIC75, MIC50, and MIC30 for 24 h. In the time-dependent experiment, a significant (p < 0.05) increase of expression in NADPH and EtPP5 were detected after 4 h of incubation with glabridin at a concentration of 21.43 μg/ml. The dose-dependent experiment exhibited a gradual increase of expression in all studied genes, which indicates stress imposed on E. tenella sporozoites by glabridin. In our hands, RIA was suitable to assess the anticoccidial activity exhibited by the tested natural products as a precursor to in vivo studies which will help in the identification of novel anticoccidial candidates.
Collapse
|
2
|
Desai S, Srambikkal N, Yadav HD, Shetake N, Balla MMS, Kumar A, Ray P, Ghosh A, Pandey BN. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model. PLoS One 2016; 11:e0161662. [PMID: 27561007 PMCID: PMC4999205 DOI: 10.1371/journal.pone.0161662] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/09/2016] [Indexed: 12/21/2022] Open
Abstract
Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about the damaging RIBE in an in vivo tumor model, which may have significant implication in improvement of cancer radiotherapy.
Collapse
Affiliation(s)
- Sejal Desai
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Nishad Srambikkal
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Hansa D. Yadav
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Neena Shetake
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Murali M. S. Balla
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Amit Kumar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Pritha Ray
- Advanced Centre for Training, Research and Education of Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Anu Ghosh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - B. N. Pandey
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- * E-mail: ;
| |
Collapse
|
3
|
Hu K, Li W, Gao J, Liu Q, Wang H, Wang Y, Sang J. Role of Ppt1 in multiple stress responses in Candida albicans. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-014-0552-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Hu Z, Tie Y, Lü G, Fu H, Xing R, Zhu J, Sun Z, Zheng X. Correlation of microRNAs responding to high dose γ-irradiation with predicted target mRNAs in HeLa cells using microarray analyses. CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-013-6033-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Tu WZ, Li B, Huang B, Wang Y, Liu XD, Guan H, Zhang SM, Tang Y, Rang WQ, Zhou PK. γH2AX foci formation in the absence of DNA damage: mitotic H2AX phosphorylation is mediated by the DNA-PKcs/CHK2 pathway. FEBS Lett 2013; 587:3437-43. [PMID: 24021642 DOI: 10.1016/j.febslet.2013.08.028] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/06/2013] [Accepted: 08/21/2013] [Indexed: 12/15/2022]
Abstract
Phosphorylated H2AX is considered to be a biomarker for DNA double-strand breaks (DSB), but recent evidence suggests that γH2AX does not always indicate the presence of DSB. Here we demonstrate the bimodal dynamic of H2AX phosphorylation induced by ionizing radiation, with the second peak appearing when G2/M arrest is induced. An increased level of γH2AX occurred in mitotic cells, and this increase was attenuated by DNA-PKcs inactivation or Chk2 depletion, but not by ATM inhibition. The phosphorylation-mimic CHK2-T68D abrogated the attenuation of mitotic γH2AX induced by DNA-PKcs inactivation. Thus, the DNA-PKcs/CHK2 pathway mediates the mitotic phosphorylation of H2AX in the absence of DNA damage.
Collapse
Affiliation(s)
- Wen-Zhi Tu
- Institute for Environmental Medicine and Radiation Hygiene, The College of Public Health, University of South China, Hengyang, Hunan Province 421000, PR China; Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhou BH, Wang HW, Zhao ZS, Liu M, Yan WC, Zhao J, Zhang Z, Xue FQ. A novel serine/threonine protein phosphatase type 5 from second-generation merozoite of Eimeria tenella is associated with diclazuril-induced apoptosis. Parasitol Res 2013; 112:1771-80. [PMID: 23417098 DOI: 10.1007/s00436-013-3336-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/31/2013] [Indexed: 11/25/2022]
Abstract
Screening the anticoccidial drug targets is very important for developing novel drugs and revealing the molecular basis of drug resistance in coccidia. Due to high effectivity and safety, diclazuril was used widely in the poultry industry. To assess the roles of the serine/threonine protein phosphatase type 5 of second-generation merozoites in Eimeria tenella (EtPP5) in the anticoccidial activity of diclazuril against chicken coccidiosis, EtPP5 was cloned using reverse transcriptase polymerase chain reaction and rapid amplification of cDNA ends. Ultrastructural changes in second-generation merozoites and mRNA expression level of EtPP5 were monitored by transmission electron microscopy (TEM) and quantitative real-time PCR, respectively. The results showed that the full length of the cloned EtPP5 cDNA (2,495 bp) encompassed a 1,647-bp open reading frame encoding a polypeptide of 548 residues with an estimated molecular mass of 60.82 kDa and a theoretical isoelectric point of 5.89. Molecular analysis of EtPP5 reveals the presence of a C-terminal phosphatase domain and an extended N-terminal tetratricopeptide repeat motif, a typical feature of protein phosphatases. The cDNA sequence has been submitted to the GenBank database with accession number JX987508. EtPP5 shared 89% homology with the published sequence of a PP5 ortholog of Toxoplasma gondii at the amino acid level (GenBank XP_002364442.1). TEM observed that diclazuril induced ultrastructural changes in second-generation merozoites. Quantitative real-time PCR analysis showed that compared with the control group, the level of EtPP5 mRNA expression was significantly downregulated by 51.4% by diclazuril treatment. The high similarity of EtPP5 to previously described PP5 of other organisms, as well as its downregulated expression and connection with apoptosis in the second-generation merozoites induced by diclazuril, suggests that it could act an important role in understanding the signaling mechanism underlining the diclazuril-induced merozoites apoptosis.
Collapse
Affiliation(s)
- Bian-hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, 70 Tianjin Road, Jianxi, Luoyang, Hehan, 471003, China
| | | | | | | | | | | | | | | |
Collapse
|