Chen X, Yin YH. A highly efficient semiphenomenological model of a half-sarcomere for real-time prediction of mechanical behavior.
J Biomech Eng 2014;
136:121001. [PMID:
25210775 DOI:
10.1115/1.4028536]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 09/11/2014] [Indexed: 11/08/2022]
Abstract
With existent biomechanical models of skeletal muscle, challenges still exist in implementing real-time predictions for contraction statuses that are particularly significant to biomechanical and biomedical engineering. Because of this difficulty, this paper proposed a decoupled scheme of the links involved in the working process of a sarcomere and established a semiphenomenological model integrating both linear and nonlinear frames of no higher than a second-order system. In order to facilitate engineering application and cybernetics, the proposed model contains a reduced number of parameters and no partial differential equation, making it highly concise and computationally efficient. Through the simulations of various contraction modes, including isometric, isotonic, successive stretch and release, and cyclic contractions, the correctness and efficiency of the model, are validated. Although this study targets half-sarcomeres, the proposed model can be easily extended to describe the larger-scale mechanical behavior of a muscle fiber or a whole muscle.
Collapse