1
|
Ramesh M, Janani R, Deepa C, Rajeshkumar L. Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications. BIOSENSORS 2022; 13:40. [PMID: 36671875 PMCID: PMC9856107 DOI: 10.3390/bios13010040] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 05/14/2023]
Abstract
Biosensors are modern engineering tools that can be widely used for various technological applications. In the recent past, biosensors have been widely used in a broad application spectrum including industrial process control, the military, environmental monitoring, health care, microbiology, and food quality control. Biosensors are also used specifically for monitoring environmental pollution, detecting toxic elements' presence, the presence of bio-hazardous viruses or bacteria in organic matter, and biomolecule detection in clinical diagnostics. Moreover, deep medical applications such as well-being monitoring, chronic disease treatment, and in vitro medical examination studies such as the screening of infectious diseases for early detection. The scope for expanding the use of biosensors is very high owing to their inherent advantages such as ease of use, scalability, and simple manufacturing process. Biosensor technology is more prevalent as a large-scale, low cost, and enhanced technology in the modern medical field. Integration of nanotechnology with biosensors has shown the development path for the novel sensing mechanisms and biosensors as they enhance the performance and sensing ability of the currently used biosensors. Nanoscale dimensional integration promotes the formulation of biosensors with simple and rapid detection of molecules along with the detection of single biomolecules where they can also be evaluated and analyzed critically. Nanomaterials are used for the manufacturing of nano-biosensors and the nanomaterials commonly used include nanoparticles, nanowires, carbon nanotubes (CNTs), nanorods, and quantum dots (QDs). Nanomaterials possess various advantages such as color tunability, high detection sensitivity, a large surface area, high carrier capacity, high stability, and high thermal and electrical conductivity. The current review focuses on nanotechnology-enabled biosensors, their fundamentals, and architectural design. The review also expands the view on the materials used for fabricating biosensors and the probable applications of nanotechnology-enabled biosensors.
Collapse
Affiliation(s)
- Manickam Ramesh
- Department of Mechanical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Ravichandran Janani
- Department of Physics, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Chinnaiyan Deepa
- Department of Artificial Intelligence & Data Science, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Lakshminarasimhan Rajeshkumar
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India
| |
Collapse
|
2
|
Liquid Crystal Droplet-Based Biosensors: Promising for Point-of-Care Testing. BIOSENSORS 2022; 12:bios12090758. [PMID: 36140143 PMCID: PMC9496589 DOI: 10.3390/bios12090758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
The development of biosensing platforms has been impressively accelerated by advancements in liquid crystal (LC) technology. High response rate, easy operation, and good stability of the LC droplet-based biosensors are all benefits of the long-range order of LC molecules. Bioprobes emerged when LC droplets were combined with biotechnology, and these bioprobes are used extensively for disease diagnosis, food safety, and environmental monitoring. The LC droplet biosensors have high sensitivity and excellent selectivity, making them an attractive tool for the label-free, economical, and real-time detection of different targets. Portable devices work well as the accessory kits for LC droplet-based biosensors to make them easier to use by anyone for on-site monitoring of targets. Herein, we offer a review of the latest developments in the design of LC droplet-based biosensors for qualitative target monitoring and quantitative target analysis.
Collapse
|
3
|
Yang X, Zhao X, Liu F, Li H, Zhang CX, Yang Z. Simple, rapid and sensitive detection of Parkinson's disease related alpha-synuclein using a DNA aptamer assisted liquid crystal biosensor. SOFT MATTER 2021; 17:4842-4847. [PMID: 33889925 DOI: 10.1039/d1sm00298h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Alpha-synuclein (αS) has been proposed as a potential biomarker for the diagnosis of Parkinson's disease (PD). However, the detection of αS using a simple, rapid and sensitive approach is still challenging. Herein, we construct a new type of biosensor for the detection of αS, combining the stimuli-responsiveness of liquid crystals (LCs) and the specific interaction of a DNA aptamer with proteins. In principle, the positively charged surfactant hexadecyltrimethylammonium bromide (CTAB) binds with the negatively charged DNA aptamer via electrostatic interactions; in the presence of αS, the DNA aptamer specifically binds with αS and releases CTAB, which is an amphiphilic molecule and subsequently assembles at the LC-aqueous interface, resulting in a homeotropic alignment of LCs with a dark optical signal. In the absence of αS, CTAB binds with the DNA aptamer without affecting the alignment of LCs, which shows planar anchoring with a bright optical signal. The response time of LCs towards αS is rapid and can be down to minutes. The LC biosensor established here has a good specificity for αS and can recognize αS even from a mixture of proteins. The LC biosensor also exhibits high sensitivity with a limit of detection of αS as low as 10 pM, which is comparable to that of the enzyme-linked immunosorbent assay. This work provides a new strategy for the detection of αS in a simple, rapid and sensitive manner, possessing promising potentials towards early diagnosis and clinical applications.
Collapse
Affiliation(s)
- Xiuxiu Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Xiaofang Zhao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Fengwei Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Haiyu Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Claire Xi Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Zhongqiang Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
5
|
Prakash J, Parveen A, Mishra YK, Kaushik A. Nanotechnology-assisted liquid crystals-based biosensors: Towards fundamental to advanced applications. Biosens Bioelectron 2020; 168:112562. [DOI: 10.1016/j.bios.2020.112562] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/09/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
|
6
|
Yang X, Li H, Zhao X, Liao W, Zhang CX, Yang Z. A novel, label-free liquid crystal biosensor for Parkinson's disease related alpha-synuclein. Chem Commun (Camb) 2020; 56:5441-5444. [PMID: 32292959 DOI: 10.1039/d0cc01025a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A liquid crystal biosensor based on DNA aptamer for sensitive detection of Parkinson's Disease (PD) related alpha-synuclein was developed. This LC biosensor is constructed using a simple and label free method, and it not only enables early PD diagnosis, but also provides a general platform for detection based on DNA aptamer.
Collapse
Affiliation(s)
- Xiuxiu Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Haiyu Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Xiaofang Zhao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| | - Wei Liao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Claire Xi Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| | - Zhongqiang Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Yang X, Tian Y, Li F, Yu Q, Tan SF, Chen Y, Yang Z. Investigation of the Assembly Behavior of an Amphiphilic Lipopeptide at the Liquid Crystal-Aqueous Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2490-2497. [PMID: 30696245 DOI: 10.1021/acs.langmuir.8b03294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this article, we designed an amphiphilic lipopeptide molecule, 5(6)-carboxyfluorescein-KKKKKKSKTK-Cys(C12H25)-OMe (FAM-lipopeptide-C12), and studied its assembly behavior at the 4-cyano-4'-pentylbiphenyl (5CB)-aqueous interface. The ordering transitions of liquid crystals (LCs) revealed that FAM-lipopeptide-C12 can assemble at the LC-aqueous interface (both planar and curved interfaces). The assembly can be destroyed by adding trypsin, which catalyzes the hydrolysis of lipopeptides. Fluorescence measurements further confirmed the assembly and deassembly behavior of FAM-lipopeptide-C12 at the LC-aqueous interface. Overall, our work provides a general method for the construction of a biointerface by directly assembling amphiphilic lipopeptides at the LC-aqueous interface, which can potentially be used in selectively detecting the activity of specific enzymes and other biomolecular interactions.
Collapse
|
8
|
Chen WL, Ho TY, Huang JW, Chen CH. Continuous monitoring of pH level in flow aqueous system by using liquid crystal-based sensor device. Microchem J 2018. [DOI: 10.1016/j.microc.2018.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Popov P, Mann EK, Jákli A. Thermotropic liquid crystal films for biosensors and beyond. J Mater Chem B 2017; 5:5061-5078. [DOI: 10.1039/c7tb00809k] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent results on structural properties and possible bio-sensing applications of planar liquid crystal films are reviewed.
Collapse
Affiliation(s)
- Piotr Popov
- Department of Physics
- Kent State University
- Kent
- USA
- Liquid Crystal Institute
| | | | - Antal Jákli
- Liquid Crystal Institute
- Kent State University
- Kent
- USA
- Complex Fluid Group
| |
Collapse
|
10
|
Jahn IJ, Žukovskaja O, Zheng XS, Weber K, Bocklitz TW, Cialla-May D, Popp J. Surface-enhanced Raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications. Analyst 2017; 142:1022-1047. [DOI: 10.1039/c7an00118e] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The review provides an overview of the development in the field of surface-enhanced Raman spectroscopy combined with microfluidic platforms.
Collapse
Affiliation(s)
- I. J. Jahn
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| | - O. Žukovskaja
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
| | - X.-S. Zheng
- Leibniz Institute of Photonic Technology Jena
- 07745 Jena
- Germany
| | - K. Weber
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| | - T. W. Bocklitz
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| | - D. Cialla-May
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| | - J. Popp
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| |
Collapse
|
11
|
The Assembly of DNA Amphiphiles at Liquid Crystal-Aqueous Interface. NANOMATERIALS 2016; 6:nano6120229. [PMID: 28335357 PMCID: PMC5302708 DOI: 10.3390/nano6120229] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/19/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022]
Abstract
In this article, we synthesized a type of DNA amphiphiles (called DNA-lipids) and systematically studied its assembly behavior at the liquid crystal (LC)—aqueous interface. It turned out that the pure DNA-lipids at various concentrations cannot trigger the optical transition of liquid crystals from planar anchoring to homeotropic anchoring at the liquid crystal—aqueous interface. The co-assembly of DNA-lipid and l-dilauroyl phosphatidylcholine (l-DLPC) indicated that the DLPC assembled all over the LC-aqueous interface, and DNA-lipids prefer to couple with LC in certain areas, particularly in polarized and fluorescent image, forming micron sized net-like structures. The addition of DNA complementary to DNA-lipids forming double stranded DNA-lipids caused de-assembly of DNA-lipids from LC-aqueous interface, resulting in the disappearance of net-like structures, which can be visualized through polarized microscope. The optical changes combined with DNA unique designable property and specific interaction with wide range of target molecules, the DNA-lipids decorated LC-aqueous interface would provide a new platform for biological sensing and diagnosis.
Collapse
|
12
|
Ailincai D, Marin L, Shova S, Tuchilus C. Benzoate liquid crystals with direct isotropic–smectic transition and antipathogenic activity. CR CHIM 2016. [DOI: 10.1016/j.crci.2016.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Zafiu C, Hussain Z, Küpcü S, Masutani A, Kilickiran P, Sinner EK. Liquid crystals as optical amplifiers for bacterial detection. Biosens Bioelectron 2016; 80:161-170. [PMID: 26827146 DOI: 10.1016/j.bios.2016.01.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/22/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
Interactions of bacteria with target molecules (e.g. antibiotics) or other microorganisms are of growing interest. The first barrier for targeting gram-negative bacteria is layer of a Lipopolysaccharides (LPS). Liquid crystal (LC) based sensors covered with LPS monolayers, as presented in this study, offer a simple model to study and make use of this type of interface for detection and screening. This work describes in detail the production and application of such sensors based on three different LPS that have been investigated regarding their potential to serve as sensing layer to detect bacteria. The LPS O127:B8 in combination with a LC based sensor was identified to be most useful as biomimetic sensing surface. This LPS/LC combination interacts with three different bacteria species, one gram-positive and two gram-negative species, allowing the detection of bacterial presence regardless from their viability. It could be shown that even very low bacterial cell numbers (minimum 500 cell ml(-1)) could be detected within minutes (maximum 15 min). The readout mechanism is the adsorption of bacterial entities on surface bond LPS molecules with the LC serving as an optical amplifier.
Collapse
Affiliation(s)
- C Zafiu
- Laboratory for Synthetic Bio-architectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria; Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Z Hussain
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| | - S Küpcü
- Laboratory for Synthetic Bio-architectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - A Masutani
- Johnson Matthey Advanced Glass Technologies, Stuttgart, Germany
| | - P Kilickiran
- CAST Gründungszentrum GmbH, Wilhelm-Greil-Straße 15, 6020 Innsbruck, Austria
| | - E-K Sinner
- Laboratory for Synthetic Bio-architectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
14
|
Yang L, Khan M, Park SY. Liquid crystal droplets functionalized with charged surfactant and polyelectrolyte for non-specific protein detection. RSC Adv 2015. [DOI: 10.1039/c5ra15647e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
5CBsurfactant droplets were coated with polyelectrolytes for utilization of non-specific protein detection.
Collapse
Affiliation(s)
- Lei Yang
- School of Applied Chemical Engineering
- Department of Polymer Science & Engineering
- Polymeric Nano-material Laboratory
- Kyungpook National University
- Daegu 702-701
| | - Mashooq Khan
- School of Applied Chemical Engineering
- Department of Polymer Science & Engineering
- Polymeric Nano-material Laboratory
- Kyungpook National University
- Daegu 702-701
| | - Soo-Young Park
- School of Applied Chemical Engineering
- Department of Polymer Science & Engineering
- Polymeric Nano-material Laboratory
- Kyungpook National University
- Daegu 702-701
| |
Collapse
|