1
|
Calzadilla PI, Kirilovsky D. Revisiting cyanobacterial state transitions. Photochem Photobiol Sci 2020; 19:585-603. [DOI: 10.1039/c9pp00451c] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Critical evaluation of “new” and “old” models of cyanobacterial state transitions. Phycobilisome and membrane contributions to this mechanism are addressed. The signaling transduction pathway is discussed.
Collapse
Affiliation(s)
- Pablo I. Calzadilla
- Université Paris-Saclay
- CNRS
- CEA
- Institute for Integrative Biology of the Cell (I2BC)
- 91198 Gif sur Yvette
| | - Diana Kirilovsky
- Université Paris-Saclay
- CNRS
- CEA
- Institute for Integrative Biology of the Cell (I2BC)
- 91198 Gif sur Yvette
| |
Collapse
|
2
|
Chen Z, Zhan J, Chen Y, Yang M, He C, Ge F, Wang Q. Effects of Phosphorylation of β Subunits of Phycocyanins on State Transition in the Model Cyanobacterium Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2015; 56:1997-2013. [PMID: 26315596 DOI: 10.1093/pcp/pcv118] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/09/2015] [Indexed: 05/22/2023]
Abstract
Synechocystis sp. PCC 6803 (hereafter Synechocystis) is a model cyanobacterium and has been used extensively for studies concerned with photosynthesis and environmental adaptation. Although dozens of protein kinases and phosphatases with specificity for Ser/Thr/Tyr residues have been predicted, only a few substrate proteins are known in Synechocystis. In this study, we report 194 in vivo phosphorylation sites from 149 proteins in Synechocystis, which were identified using a combination of peptide pre-fractionation, TiO(2) enrichment and liquid chromatograpy-tandem mass spectrometry (LC-MS/MS) analysis. These phosphorylated proteins are implicated in diverse biological processes, such as photosynthesis. Among all identified phosphoproteins involved in photosynthesis, the β subunits of phycocyanins (CpcBs) were found to be phosphorylated on Ser22, Ser49, Thr94 and Ser154. Four non-phosphorylated mutants were constructed by using site-directed mutagenesis. The in vivo characterization of the cpcB mutants showed a slower growth under high light irradiance and displayed fluorescence quenching to a lower level and less efficient energy transfer inside the phycobilisome (PBS). Notably, the non-phosphorylated mutants exhibited a slower state transition than the wild type. The current results demonstrated that the phosphorylation status of CpcBs affects the energy transfer and state transition of photosynthesis in Synechocystis. This study provides novel insights into the molecular mechanisms of protein phosphorylation in the regulation of photosynthesis in cyanobacteria and may facilitate the elucidation of the entire regulatory network by linking kinases to their physiological substrates.
Collapse
Affiliation(s)
- Zhuo Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China These authors contributed equally to this work.
| | - Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China University of Chinese Academy of Sciences, Beijing 100094, China These authors contributed equally to this work.
| | - Ying Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Mingkun Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Chenliu He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| |
Collapse
|