1
|
Li N, Yuan X, Li Y, Zhang G, Yang Q, Zhou Y, Guo M, Liu J. Bioinspired Liquid Metal Based Soft Humanoid Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404330. [PMID: 38723269 DOI: 10.1002/adma.202404330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Indexed: 08/29/2024]
Abstract
The pursuit of constructing humanoid robots to replicate the anatomical structures and capabilities of human beings has been a long-standing significant undertaking and especially garnered tremendous attention in recent years. However, despite the progress made over recent decades, humanoid robots have predominantly been confined to those rigid metallic structures, which however starkly contrast with the inherent flexibility observed in biological systems. To better innovate this area, the present work systematically explores the value and potential of liquid metals and their derivatives in facilitating a crucial transition towards soft humanoid robots. Through a comprehensive interpretation of bionics, an overview of liquid metals' multifaceted roles as essential components in constructing advanced humanoid robots-functioning as soft actuators, sensors, power sources, logical devices, circuit systems, and even transformable skeletal structures-is presented. It is conceived that the integration of these components with flexible structures, facilitated by the unique properties of liquid metals, can create unexpected versatile functionalities and behaviors to better fulfill human needs. Finally, a revolution in humanoid robots is envisioned, transitioning from metallic frameworks to hybrid soft-rigid structures resembling that of biological tissues. This study is expected to provide fundamental guidance for the coming research, thereby advancing the area.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Yuan
- School of Economics and Business Administration, Chongqing University, Chongqing, 400044, China
| | - Yuqing Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangcheng Zhang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianhong Yang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxin Zhou
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Guo
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Liu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Agarwal R, Mohamad A. Gallium-based liquid metals as smart responsive materials: Morphological forms and stimuli characterization. Adv Colloid Interface Sci 2024; 329:103183. [PMID: 38788305 DOI: 10.1016/j.cis.2024.103183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/02/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Gallium-based liquid metals (GaLMs) have garnered monumental attention from the scientific community due to their diverse actuation characteristics. These metals possess remarkable characteristics, including high surface tension, excellent electrical and thermal conductivity, phase transformation behaviour, minimal viscosity and vapour pressure, lack of toxicity, and biocompatibility. In addition, GaLMs have melting points that are either lower or near room temperature, making them incredibly beneficial when compared to solid metals since they can be easily deformed. Thus, there has been significant progress in developing multifunctional devices using GaLMs, including bio-devices, flexible and self-healing circuits, and actuators. Despite numerous reports on these liquid metals (LMs), there is an urgent need for consolidated and coherent literature regarding their actuation principles linked to the targeted application. This will ensure that the reader gets the flavour of physics behind the actuation mechanism and how it can be utilized in diverse fields. Moreover, the actuation mechanism has been scattered in the literature, and thus, the primary motive of this review is to provide a one-stop solution for the actuation mechanism and the associated dynamics while directing the readers to specialized literature. Thus, addressing this issue, we thoroughly examine and present a detailed account of the actuation mechanisms of GaLMs while highlighting the science behind them. We also discuss the various morphologies of GaLMs and their crucial physical characteristics which decide their targeted application. Furthermore, we also delve into commonly held beliefs about GaLMs in the literature, such as their toxicity and antibacterial properties, to offer readers a more accurate understanding. Finally, we have explored several key unanswered aspects of the LM that should be explored in future research. The core strength of this review lies in its simplistic approach in offering a starting point for researchers venturing this innovative field, while we make use of existing literature to develop a comprehensive understanding.
Collapse
Affiliation(s)
- Rahul Agarwal
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| | - Abdulmajeed Mohamad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
3
|
Zhao Z, Soni S, Lee T, Nijhuis CA, Xiang D. Smart Eutectic Gallium-Indium: From Properties to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203391. [PMID: 36036771 DOI: 10.1002/adma.202203391] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/30/2022] [Indexed: 05/27/2023]
Abstract
Eutectic gallium-indium (EGaIn), a liquid metal with a melting point close to or below room temperature, has attracted extensive attention in recent years due to its excellent properties such as fluidity, high conductivity, thermal conductivity, stretchability, self-healing capability, biocompatibility, and recyclability. These features of EGaIn can be adjusted by changing the experimental condition, and various composite materials with extended properties can be further obtained by mixing EGaIn with other materials. In this review, not only the are unique properties of EGaIn introduced, but also the working principles for the EGaIn-based devices are illustrated and the developments of EGaIn-related techniques are summarized. The applications of EGaIn in various fields, such as flexible electronics (sensors, antennas, electronic circuits), molecular electronics (molecular memory, opto-electronic switches, or reconfigurable junctions), energy catalysis (heat management, motors, generators, batteries), biomedical science (drug delivery, tumor therapy, bioimaging and neural interfaces) are reviewed. Finally, a critical discussion of the main challenges for the development of EGaIn-based techniques are discussed, and the potential applications in new fields are prospected.
Collapse
Affiliation(s)
- Zhibin Zhao
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| | - Saurabh Soni
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Takhee Lee
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Christian A Nijhuis
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Dong Xiang
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| |
Collapse
|
4
|
Duan M, Zhu X, Shan X, Wang H, Chen S, Liu J. Responsive Liquid Metal Droplets: From Bulk to Nano. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1289. [PMID: 35457997 PMCID: PMC9026530 DOI: 10.3390/nano12081289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
Droplets exist widely in nature and play an extremely important role in a broad variety of industrial processes. Typical droplets, including water and oil droplets, have received extensive attention and research, however their single properties still cannot meet diverse needs. Fortunately, liquid metal droplets emerging in recent years possess outstanding properties, including large surface tension, excellent electrical and thermal conductivity, convenient chemical processing, easy transition between liquid and solid phase state, and large-scale deformability, etc. More interestingly, liquid metal droplets with unique features can respond to external factors, including the electronic field, magnetic field, acoustic field, chemical field, temperature, and light, exhibiting extraordinary intelligent response characteristics. Their development over the past decade has brought substantial breakthroughs and progress. To better promote the advancement of this field, the present article is devoted to systematically summarizing and analyzing the recent fundamental progress of responsive liquid metal droplets, not only involving droplet characteristics and preparation methods, but also focusing on their diverse response behaviors and mechanisms. On this basis, the challenges and prospects related to the following development of liquid metal droplets are also proposed. In the future, responsive liquid metal droplets with a rapid development trend are expected to play a key role in soft robots, biomedicine, smart matter, and a variety of other fields.
Collapse
Affiliation(s)
- Minghui Duan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (M.D.); (X.Z.); (X.S.); (H.W.)
| | - Xiyu Zhu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (M.D.); (X.Z.); (X.S.); (H.W.)
| | - Xiaohui Shan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (M.D.); (X.Z.); (X.S.); (H.W.)
| | - Hongzhang Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (M.D.); (X.Z.); (X.S.); (H.W.)
| | - Sen Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (M.D.); (X.Z.); (X.S.); (H.W.)
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (M.D.); (X.Z.); (X.S.); (H.W.)
- Beijing Key Laboratory of Cryo-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Ye J, Tan SC, Wang L, Liu J. A new hydrodynamic interpretation of liquid metal droplet motion induced by an electrocapillary phenomenon. SOFT MATTER 2021; 17:7835-7843. [PMID: 34612351 DOI: 10.1039/d1sm00873k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Marangoni effect, induced by the surface tension gradient resulting from the gradient of temperature, concentration, or electric potential gradient along a surface, is commonly utilized to manipulate a droplet. It is also the reason for unique behaviors of liquid metal such as moving, breathing, and large-scale deformation under an electric field, which have aroused tremendous interest in academics. However, liquid metal droplets are usually treated as solid marbles, which neglect their fluidic features and can hardly explain some unusual phenomena, such as a droplet under a stationary electric field that moves in the opposite direction in different solutions. To better clarify these discrepancies, this study reveals that the movement of liquid metal is directly driven by viscous forces of solution rather than interfacial tension. This mechanism was determined by analyzing flow characteristics on a liquid metal surface. Additionally, experiments with liquid metal free falling in solution, liquid metal droplet movement experiments on substrates with different roughness, and liquid metal droplet movement experiments under high current density were additionally conducted to verify the theoretical interpretation. This research is instrumental for a greater understanding of the movement of liquid metal under an electric field and lays the foundation for the applications of liquid metal droplets in pumping, fluid mixing, and many other microfluidic fields.
Collapse
Affiliation(s)
- Jiao Ye
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | | | | | | |
Collapse
|
6
|
Liu Q, Meng S, Zheng T, Liu Y, Ma X, Feng H. Alkaline-Driven Liquid Metal Janus Micromotor with a Coating Material-Dependent Propulsion Mechanism. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35897-35904. [PMID: 34296849 DOI: 10.1021/acsami.1c07288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Micro/nanomotors have achieved huge progress in driving power divergence and accurate maneuver manipulations in the last two decades. However, there are still several obstacles to the potential biomedical applications, with respect to their biotoxicity and biocompatibility. Gallium- and indium-based liquid metal (LM) alloys are outstanding candidates for solving these issues due to their good biocompatibility and low biotoxicity. Hereby, we fabricate LM Janus micromotors (LMJMs) through ultrasonically dispersing GaInSn LM into microparticles and sputtering different materials as demanded to tune their moving performance. These LMJMs can move in alkaline solution due to the reaction between Ga and NaOH. There are two driving mechanisms when sputtering materials are metallic or nonmetallic. One is self-electrophoresis when sputtering materials are metallic, and the other one is self-diffusiophoresis when sputtering materials are nonmetallic. Our LMJMs can flip between those two modes by varying the deposited materials. The self-electrophoresis-driven LMJMs' moving speed is much faster than the self-diffusiophoresis-driven LMJMs' speed. The reason is that the former occurs galvanic corrosion reaction, while the latter is correlated to chemical corrosion reaction. The switching of the driving mechanism of the LMJMs can be used to fit into different biochemical application scenarios.
Collapse
Affiliation(s)
- Qing Liu
- Sauvage Laboratory for Smart Materials, Flexible Printed Electronic Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shuaishuai Meng
- Sauvage Laboratory for Smart Materials, Flexible Printed Electronic Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Tingting Zheng
- Peking University Shenzhen Hospital & Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Yaming Liu
- Sauvage Laboratory for Smart Materials, Flexible Printed Electronic Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, Flexible Printed Electronic Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Huanhuan Feng
- Sauvage Laboratory for Smart Materials, Flexible Printed Electronic Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
7
|
Xue R, Tao Y, Sun H, Liu W, Ge Z, Jiang T, Jiang H, Han F, Li Y, Ren Y. Small universal mechanical module driven by a liquid metal droplet. LAB ON A CHIP 2021; 21:2771-2780. [PMID: 34047740 DOI: 10.1039/d1lc00206f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Gallium-based liquid metal droplets (LMDs) from micro-electromechanical systems (MEMS) have gained much attention due to their precise and sensitive controllability under an electric field. Considerable research progress has been made in the field of actuators by taking advantage of the continuous electrowetting (CEW) present within the solution. However, the motion generated is confined within the specific liquid environment and is lacking a way to transmit its motion outwardly, which undoubtedly serves as the greatest obstacle restricting any further development. Therefore, a driving module is proposed to generate rotational motion outside the solution for universality. Its performance can be easily tuned by adjusting the applied voltage. As an example of further application, the module is designed in the form of a pump that realizes the continuous/intermittent propulsion to mimic the veins/arteries of the human body without the problem in the previous LMD-based pumps. The feasibility of this pump in the on-chip in vitro analysis is proved by preparing a dynamic cell culture to simulate the movement of biofluids within human bodies. This study proposes an optional solution with an LMD-based motor for generating rotational motion and to expand current research on soft materials in actuators.
Collapse
Affiliation(s)
- Rui Xue
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Ye Tao
- School of Engineering and Applied Sciences and Department of Physics Harvard University, 9 Oxford Street, Cambridge, MA 02138, USA.
| | - Haoxiu Sun
- School of Life Sciences, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150001, People's Republic of China.
| | - Weiyu Liu
- School of Electronics and Control Engineering, Chang'an University, Middle-Section of Nan'er Huan Road, Xi'an 710064, People's Republic of China
| | - Zhenyou Ge
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin 150001, People's Republic of China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin 150001, People's Republic of China
| | - Fang Han
- School of Life Sciences, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150001, People's Republic of China.
| | - Yu Li
- School of Life Sciences, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150001, People's Republic of China.
| | - Yukun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| |
Collapse
|
8
|
Liu L, Wang D, Rao W. Mini/Micro/Nano Scale Liquid Metal Motors. MICROMACHINES 2021; 12:280. [PMID: 33800226 PMCID: PMC8001611 DOI: 10.3390/mi12030280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Swimming motors navigating in complex fluidic environments have received tremendous attention over the last decade. In particular, liquid metal (LM) as a new emerging material has shown considerable potential in furthering the development of swimming motors, due to their unique features such as fluidity, softness, reconfigurability, stimuli responsiveness, and good biocompatibility. LM motors can not only achieve directional motion but also deformation due to their liquid nature, thus providing new and unique capabilities to the field of swimming motors. This review aims to provide an overview of the recent advances of LM motors and compare the difference in LM macro and micromotors from fabrication, propulsion, and application. Here, LM motors below 1 cm, named mini/micro/nano scale liquid metal motors (MLMTs) will be discussed. This work will present physicochemical characteristics of LMs and summarize the state-of-the-art progress in MLMTs. Finally, future outlooks including both opportunities and challenges of mini/micro/nano scale liquid metal motors are also provided.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.L.); (D.W.)
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Dawei Wang
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.L.); (D.W.)
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Rao
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.L.); (D.W.)
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Chen S, Deng Z, Liu J. High performance liquid metal thermal interface materials. NANOTECHNOLOGY 2021; 32:092001. [PMID: 33207322 DOI: 10.1088/1361-6528/abcbc2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conventional thermal interface materials (TIMs) as widely used in thermal management area is inherently limited by their relatively low thermal conductivity. From an alternative, the newly emerging liquid metal based thermal interface materials (LM-TIMs) open a rather promising way, which can pronouncedly improve the thermal contact resistance and offers tremendous opportunities for making powerful thermal management materials. The LM-TIMs thus prepared exhibits superior thermal conductivity over many conventional TIMs which guarantees its significant application prospect. And the nanoparticles mediated or tuned liquid metal further enable ever conductive LM-TIMs which suggests the ultimate goal of thermal management. In this review, a systematic interpretation on the basic features of LM-TIMs was presented. Representative exploration and progress on LM-TIMs were summarized. Typical approaches toward nanotechnology enhanced high performance LM-TIMs were illustrated. The perspect of this new generation thermal management material were outlined. Some involved challenges were raised. This work is expected to provide a guide line for future research in this field.
Collapse
Affiliation(s)
- Sen Chen
- Beijing Key Lab of Cryo-Biomedical Engineering, Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhongshan Deng
- Beijing Key Lab of Cryo-Biomedical Engineering, Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jing Liu
- Beijing Key Lab of Cryo-Biomedical Engineering, Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
10
|
Yu Y, Wang S, Wang X, Wang Q, Liu J. Semisolid Al–Ga composites fabricated at room temperature for hydrogen generation. RSC Adv 2020; 10:10076-10081. [PMID: 35498592 PMCID: PMC9050229 DOI: 10.1039/c9ra10906d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/22/2020] [Indexed: 12/04/2022] Open
Abstract
Usually, Al–Ga alloys are prepared by heating materials to hundreds of degrees for a long time, and the alloys obtained are in the solid state. Although some Ga-rich liquid Al–Ga composites have been developed lately, the mass percentage of Al is small, due to which the hydrogen generation rate and efficiency are limited. Besides, an alkaline solution is indispensable in these studies, which is also a limitation. In this paper, a semisolid Al–Ga composite has been fabricated by mixing liquid gallium and fragmented aluminium foils at room temperature, which is an effective means to generate hydrogen from pure water. With the increase in the Al proportion, the mixture changes from a liquid to a cement-like semisolid material morphologically. Furthermore, an application of the fuel cell taking advantage of the hydrogen released from the composites is given. This method does not require a high-temperature device and only requires water to produce hydrogen once the semisolid Al–Ga composite material is fabricated. Therefore, this is a new approach for making more portable and safer devices for hydrogen production. A semisolid Al–Ga composite fabricated at room temperature is used as a novel material to generate hydrogen from pure water.![]()
Collapse
Affiliation(s)
- Yang Yu
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Shunqi Wang
- Shenyuan Honors College
- Beihang University
- China
| | - Xuelin Wang
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| | - Qian Wang
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Jing Liu
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
11
|
Wang Y, Duan W, Zhou C, Liu Q, Gu J, Ye H, Li M, Wang W, Ma X. Phoretic Liquid Metal Micro/Nanomotors as Intelligent Filler for Targeted Microwelding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1905067. [PMID: 31664739 DOI: 10.1002/adma.201905067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/03/2019] [Indexed: 05/23/2023]
Abstract
Micro/nanomotors (MNMs) have emerged as active micro/nanoplatforms that can move and perform functions at small scales. Much of their success, however, hinges on the use of functional properties of new materials. Liquid metals (LMs), due to their good electrical conductivity, biocompatibility, and flexibility, have attracted considerable attentions in the fields of flexible electronics, biomedicine, and soft robotics. The design and construction of LM-based motors is therefore a research topic with tremendous prospects, however current approaches are mostly limited to macroscales. Here, the fabrication of an LM-MNM (made of Galinstan, a gallium-indium-tin alloy) is reported and its potential application as an on-demand, self-targeting welding filler is demonstrated. These LM-MNMs (as small as a few hundred nanometers) are half-coated with a thin layer of platinum (Pt) and move in H2 O2 via self-electrophoresis. In addition, the LM-MNMs roaming in a silver nanowire network can move along the nanowires and accumulate at the contact junctions where they become fluidic and achieve junction microwelding at room temperature by reacting with acid vapor. This work presents an intelligent and soft nanorobot capable of repairing circuits by welding at small scales, thus extending the pool of available self-propelled MNMs and introducing new applications.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Advanced Welding and Joining (Shenzhen) and Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wendi Duan
- State Key Laboratory of Advanced Welding and Joining (Shenzhen) and Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chao Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Qing Liu
- State Key Laboratory of Advanced Welding and Joining (Shenzhen) and Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jiahui Gu
- State Key Laboratory of Advanced Welding and Joining (Shenzhen) and Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Heng Ye
- State Key Laboratory of Advanced Welding and Joining (Shenzhen) and Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Mingyu Li
- State Key Laboratory of Advanced Welding and Joining (Shenzhen) and Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xing Ma
- State Key Laboratory of Advanced Welding and Joining (Shenzhen) and Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
12
|
Sun Y, Xu S, Tan S, Liu J. Multiple Electrohydrodynamic Effects on the Morphology and Running Behavior of Tiny Liquid Metal Motors. MICROMACHINES 2018; 9:E192. [PMID: 30424125 PMCID: PMC6187728 DOI: 10.3390/mi9040192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 11/26/2022]
Abstract
Minimized motors can harvest different types of energy and transfer them into kinetic power to carry out complex operations, such as targeted drug delivery, health care, sensing and so on. In recent years, the liquid metal motor is emerging as a very promising tiny machine. This work is dedicated to investigate the motion characteristics of self-powered liquid metal droplet machines under external electric field, after engulfing a small amount of aluminum. Two new non-dimensional parameters, named Ä and Ö , are put forward for the first time to evaluate the ratio of the forces resulting from the electric field to the fluidic viscous force and the ratio of the friction force to the fluidic viscous force. Forces exerted on liquid metal droplets, the viscosity between the droplet and the surrounding fluid, the pressure difference on both ends, the friction between the bottom of the droplet and the sink base, and bubble propulsion force are evaluated and estimated regarding whether they are impetus or resistance. Effects of electric field intensity, droplet size, solution concentration and surface roughness etc. on the morphology and running behavior of such tiny liquid metal motors are clarified in detail. This work sheds light on the moving mechanism of the liquid metal droplet in aqueous solutions, preparing for more precise and complicated control of liquid metal soft machines.
Collapse
Affiliation(s)
- Yue Sun
- Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Shuo Xu
- Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Sicong Tan
- Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Jing Liu
- Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100039, China.
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Yan S, Li Y, Zhao Q, Yuan D, Yun G, Zhang J, Wen W, Tang SY, Li W. Liquid metal-based amalgamation-assisted lithography for fabrication of complex channels with diverse structures and configurations. LAB ON A CHIP 2018; 18:785-792. [PMID: 29424381 DOI: 10.1039/c8lc00047f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Numerous lab-on-a-chip applications benefit from channels with complex structures and configurations in the areas of tissue engineering and clinical diagnostics. The current fabrication approaches require time-consuming, complicated processes and bulky, expensive facilities. In this work, we propose a novel method for the fabrication of complex channels with the assistance of amalgamation of liquid metal with copper tape. This new technique enables the rapid fabrication of liquid metal molds with various dimensions and diverse structures. Two proof-of-concept experiments were conducted to verify the utilization of this method. First, the channel replicated from the liquid metal mold is used to enhance the mixing performance of liquids flowing through the channel. Second, a channel with a semicircular cross-section is fabricated to achieve 3D focusing in a simple way. This proposed technique can be readily used for fabricating complex channels for a wide range of applications.
Collapse
Affiliation(s)
- Sheng Yan
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hu L, Li J, Tang J, Liu J. Surface effects of liquid metal amoeba. Sci Bull (Beijing) 2017; 62:700-706. [PMID: 36659441 DOI: 10.1016/j.scib.2017.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/28/2017] [Accepted: 04/01/2017] [Indexed: 01/21/2023]
Abstract
Liquid metals (LM) such as eutectic gallium-indium and gallium-indium-tin are important functional liquid-state metal materials with many unique properties, which have attracted wide attentions especially from soft robot area. Recently the amoeba-like transformations of LM on the graphite surface are discovered, which present a promising future for the design and assemble of self-fueled actuators with dendritically deformable body. It appears that the surface tension of the LM can be significantly reduced when it contacts graphite surface in alkaline solution. Clearly, the specific surface should play a vital role in inducing these intriguing behaviors, which is valuable and inspiring in soft robot design. However, the information regarding varied materials functions underlying these behaviors remains unknown. To explore the generalized effects of surface materials in those intriguing behavior, several materials including glass, graphite, nickel and copper oxides (CuO) were comparatively investigated as substrate surfaces. Important results were obtained that only LM amoeba transformations were observed on graphite and CuO surfaces. In order to identify the proper surface condition for LM transformation, the intrinsic properties of substrate surfaces, such as the surface charge and roughness, as well as the specific interaction with LM like wetting behavior and mutual locomotion etc., were characterized. The integrated results revealed that LM droplet appears more likely to deform on surfaces with higher positive surface charge density, higher roughness and less bubble generation on them. In addition, another surface material, CuOx, is identified to own similar ability to graphite, which is valuable in achieving amoeba-like transformation. Moreover, this study offers a fundamental understanding of the surface properties in realizing LM amoeba transformations, which would shed light on packing and structure design of liquid metal-based soft device within multi-material system.
Collapse
Affiliation(s)
- Liang Hu
- Beijing Key Laboratory of Cryo-Biomedical Engineering and Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Li
- Beijing Key Laboratory of Cryo-Biomedical Engineering and Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianbo Tang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing Liu
- Beijing Key Laboratory of Cryo-Biomedical Engineering and Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Abstract
Solo wheel liquid metal vehicle traveling across a Petri dish under applied low electric voltage.
Collapse
Affiliation(s)
- You you Yao
- Department of Biomedical Engineering
- Tsinghua University
- Beijing 100084
- PR China
| | - Jing Liu
- Department of Biomedical Engineering
- Tsinghua University
- Beijing 100084
- PR China
- Technical Institute of Physics and Chemistry
| |
Collapse
|
16
|
Yi L, Ding Y, Yuan B, Wang L, Tian L, Chen C, Liu F, Lu J, Song S, Liu J. Breathing to harvest energy as a mechanism towards making a liquid metal beating heart. RSC Adv 2016. [DOI: 10.1039/c6ra17486h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Simulating nature to manufacture a self-powered device or motor has been an important goal in science and engineering.
Collapse
|