1
|
Alsfouk BA, Al-Kuraishy HM, Albuhadily AK, Al-Gareeb AI, Abdelaziz AM, Alexiou A, Papadakis M, Alruwaili M, Batiha GES. The potential therapeutic role of berberine in treating epilepsy focusing on temporal lobe epilepsy: State of art and ongoing perspective. Brain Res Bull 2025; 221:111189. [PMID: 39761924 DOI: 10.1016/j.brainresbull.2025.111189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/15/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Epilepsy is a neurological disease characterized by unprovoked recurrent epileptic seizures. Temporal lobe epilepsy (TLE) is the commonest type of focal epilepsy in adults that resist to the conventional anti-seizure medications (ASMs). Interestingly, ASMs do not affect the epileptogenesis and progression of disease. Therefore, repurposing of natural products with anti-inflammatory, anti-oxidant and anti-seizure effects such as berberine (BRB) may be logical in treating refractory epilepsy and TLE. However, the molecular mechanism of BRB against the development of epilepsy and progression of epileptic seizure mainly in TLE was not fully elucidated. Therefore, we attempt in this review to discuss the potential underlying molecular mechanism of BRB against the development and progression of epilepsy mainly the TLE.
Collapse
Affiliation(s)
- Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad 14132, Iraq.
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad 14132, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad 14132, Iraq; Jabir ibn Hayyan Medical University, Al-Ameer Qu./Najaf-Iraq, PO. Box13, Kufa, Iraq.
| | - Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Arish Branch, Arish 45511, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, India; Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia; Department of Research & Development, Funogen, Athens, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten, Herdecke, Heusnerstrasse 40, Wuppertal 42283, Germany.
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt.
| |
Collapse
|
2
|
Sunhe YX, Zhang YH, Fu RJ, Xu DQ, Tang YP. Neuroprotective effect and preparation methods of berberine. Front Pharmacol 2024; 15:1429050. [PMID: 39309003 PMCID: PMC11412855 DOI: 10.3389/fphar.2024.1429050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Berberine (BBR) is a natural alkaloid, which has played an important role in the field of medicine since its discovery in the late 19th century. However, the low availability of BBR in vivo prevents its full effect. In recent years, a large number of studies confirmed that BBR has a protective effect on the nervous system through various functions, yet the issue of the inability to systematically understand the protection of BBR on the nervous system remains a gap that needs to be addressed. Many existing literature introductions about berberine in neurodegenerative diseases, but the role of berberine in the nervous system goes far beyond these. Different from these literatures, this review is divided into three parts: preparation method, mechanism, and therapeutic effect. Various dosage forms of BBR and their preparation methods are added, in order to provide a reasonable choice of BBR, and help to solve the problem of low bioavailability in treatment. More importantly, we more comprehensively summarize the mechanism of BBR to protect the nervous system, in addition to the treatment of neurodegenerative diseases (anti-oxidative stress, anti-neuroinflammation, regulation of apoptosis), two extra mechanisms of berberine for the protection of the nervous system were also introduced: bidirectional regulation of autophagy and promote angiogenesis. Also, we have clarified the precise mechanism by which BBR has a therapeutic effect not only on neurodegenerative illnesses but also on multiple sclerosis, gliomas, epilepsy, and other neurological conditions. To sum up, we hope that these can evoke more efforts to comprehensively utilize of BBR nervous system, and to promote the application of BBR in nervous system protection.
Collapse
Affiliation(s)
| | | | | | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
3
|
Li S, Lin X, Duan L. Harnessing the power of natural alkaloids: the emergent role in epilepsy therapy. Front Pharmacol 2024; 15:1418555. [PMID: 38962319 PMCID: PMC11220463 DOI: 10.3389/fphar.2024.1418555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
The quest for effective epilepsy treatments has spotlighted natural alkaloids due to their broad neuropharmacological effects. This review provides a comprehensive analysis of the antiseizure properties of various natural compounds, with an emphasis on their mechanisms of action and potential therapeutic benefits. Our findings reveal that bioactive substances such as indole, quinoline, terpenoid, and pyridine alkaloids confer medicinal benefits by modulating synaptic interactions, restoring neuronal balance, and mitigating neuroinflammation-key factors in managing epileptic seizures. Notably, these compounds enhance GABAergic neurotransmission, diminish excitatory glutamatergic activities, particularly at NMDA receptors, and suppress proinflammatory pathways. A significant focus is placed on the strategic use of nanoparticle delivery systems to improve the solubility, stability, and bioavailability of these alkaloids, which helps overcome the challenges associated with crossing the blood-brain barrier (BBB). The review concludes with a prospective outlook on integrating these bioactive substances into epilepsy treatment regimes, advocating for extensive research to confirm their efficacy and safety. Advancing the bioavailability of alkaloids and rigorously assessing their toxicological profiles are essential to fully leverage the therapeutic potential of these compounds in clinical settings.
Collapse
Affiliation(s)
- Siyu Li
- Department of Neurosurgery, Clinical Trial Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Lin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijuan Duan
- Department of Neurosurgery, Clinical Trial Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Xiang G, Yang L, Qin J, Wang S, Zhang Y, Yang S. Revealing the potential bioactive components and mechanism of Qianhua Gout Capsules in the treatment of gouty arthritis through network pharmacology, molecular docking and pharmacodynamic study strategies. Heliyon 2024; 10:e30983. [PMID: 38770346 PMCID: PMC11103544 DOI: 10.1016/j.heliyon.2024.e30983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Recent clinical studies have confirmed the effectiveness of Qianhua Gout Capsules (QGC) in the treatment of gouty arthritis (GA). However, the specific regulatory targets and mechanisms of action of QGC are still unclear. To address this gap, we utilized network pharmacology, molecular docking, and pharmacodynamic approaches to investigate the bioactive components and associated mechanisms of QGC in the treatment of GA. By employing UPLC-Q Exactive-MS, we identified the compounds present in QGC, with active ingredients defined as those with oral bioavailability ≥30 % and drug similarity ≥0.18. Subsequently, the targets of these active compounds were determined using the TCMSP database, while GA-related targets were identified from DisGeNET, GeneCards, TTD, OMIM, and DrugBank databases. Further analysis including PPI analysis, GO analysis, and KEGG pathway enrichment was conducted on the targets. Validation of the predicted results was performed using a GA rat model, evaluating pathological changes, inflammatory markers, and pathway protein expression. Our results revealed a total of 130 components, 44 active components, 16 potential shared targets, GO-enriched terms, and 47 signaling pathways related to disease targets. Key active ingredients included quercetin, kaempferol, β-sitosterol, luteolin, and wogonin. The PPI analysis highlighted five targets (PPARG, IL-6, MMP-9, IL-1β, CXCL-8) with the highest connectivity, predominantly enriched in the IL-17 signaling pathway. Molecular docking experiments demonstrated strong binding of CXCL8, IL-1β, IL-6, MMP9, and PPARG targets with the top five active compounds. Furthermore, animal experiments confirmed the efficacy of QGC in treating GA in rats, showing reductions in TNF-α, IL-6, and MDA levels, and increases in SOD levels in serum. In synovial tissues, QGC treatment upregulated CXCL8 and PPARG expression, while downregulating IL-1β, MMP9, and IL-6 expression. In conclusion, this study applied a network pharmacology approach to uncover the composition of QGC, predict its pharmacological interactions, and demonstrate its in vivo efficacy, providing insights into the anti-GA mechanisms of QGC. These findings pave the way for future investigations into the therapeutic mechanisms underlying QGC's effectiveness in the treatment of GA.
Collapse
Affiliation(s)
- Gelin Xiang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Jing Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Bertoncello KT, Rodrigues G, Bonan CD. Berberine and hesperidin prevent the memory consolidation impairment induced by pentylenetetrazole in zebrafish. Behav Brain Res 2024; 466:114981. [PMID: 38580198 DOI: 10.1016/j.bbr.2024.114981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
This study verified the effects of the natural compounds berberine and hesperidin on seizure development and cognitive impairment triggered by pentylenetetrazole (PTZ) in zebrafish. Adult animals were submitted to a training session in the inhibitory avoidance test and, after 10 minutes, they received an intraperitoneal injection of 25, 50, or 100 mg/kg berberine or 100 or 200 mg/kg hesperidin. After 30 minutes, the animals were exposed to 7.5 mM PTZ for 10 minutes. Animals were submitted to the test session 24 h after the training session to verify their cognitive performance. Zebrafish larvae were exposed to 100 µM or 500 µM berberine or 10 µM or 50 µM hesperidin for 30 minutes. After, larvae were exposed to PTZ and had the seizure development evaluated by latency to reach the seizure stages I, II, and III. Adult zebrafish pretreated with 50 mg/kg berberine showed a longer latency to reach stage III. Zebrafish larvae pretreated with 500 µM berberine showed a longer latency to reach stages II and III. Hesperidin did not show any effect on seizure development both in larvae and adult zebrafish. Berberine and hesperidin pretreatments prevented the memory consolidation impairment provoked by PTZ-induced seizures. There were no changes in the distance traveled in adult zebrafish pretreated with berberine or hesperidin. In larval stage, berberine caused no changes in the distance traveled; however, hesperidin increased the locomotion. Our results reinforce the need for investigating new therapeutic alternatives for epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Kanandra Taisa Bertoncello
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriel Rodrigues
- Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Zhu H, Wu Z, Yu Y, Chang K, Zhao C, Huang Z, He W, Luo Z, Huang H, Zhang C. Integrated non-targeted metabolomics and network pharmacology to reveal the mechanisms of berberine in the long-term treatment of PTZ-induced epilepsy. Life Sci 2024; 336:122347. [PMID: 38103728 DOI: 10.1016/j.lfs.2023.122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
AIMS The increasing resistance to anti-seizure medications (ASMs) and the ambiguous mechanisms of epilepsy highlight the pressing demand for the discovery of pioneering lead compounds. Berberine (BBR) has received significant attention in recent years within the field of chronic metabolic disorders. However, the reports on the treatment of epilepsy with BBR are not systematic and the mechanism remains unclear. MAIN METHODS In this study, the seizure behaviors of mice were recorded following subcutaneous injection of pentetrazol (PTZ). Non-targeted metabolomics was used to analyze the serum metabolites based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Meanwhile, multivariate statistical methods were used for metabolite identification and pathway analysis. Furthermore, network pharmacology, molecular docking, and quantitative real-time PCR assay were used for the target identification. KEY FINDINGS BBR had anti-seizure effects on PTZ-induced seizure mice after long-term treatment. Tryptophan metabolism and phenylalanine metabolism were involved in regulating the therapeutic effects of BBR. SIGNIFICANCE This study reveals the potential mechanism of BBR for epilepsy treatment based on non-targeted metabolomics and network pharmacology, which provides evidence for uncovering the pathogenesis of epilepsy, suggesting that BBR is a potential lead compound for anti-epileptic treatment.
Collapse
Affiliation(s)
- Hailin Zhu
- School of Pharmacy, Nanchang University, 1299 Xuefu Road, Nanchang 330014, China
| | - Ziyu Wu
- School of Pharmacy, Nanchang University, 1299 Xuefu Road, Nanchang 330014, China
| | - Yizhou Yu
- School of Pharmacy, Nanchang University, 1299 Xuefu Road, Nanchang 330014, China
| | - Kaile Chang
- School of Pharmacy, Nanchang University, 1299 Xuefu Road, Nanchang 330014, China
| | - Chunfang Zhao
- School of Pharmacy, Nanchang University, 1299 Xuefu Road, Nanchang 330014, China
| | - Ziyu Huang
- School of Pharmacy, Nanchang University, 1299 Xuefu Road, Nanchang 330014, China
| | - Wen He
- School of Pharmacy, Nanchang University, 1299 Xuefu Road, Nanchang 330014, China
| | - Zhong Luo
- School of Pharmacy, Nanchang University, 1299 Xuefu Road, Nanchang 330014, China
| | - Hui Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang 330200, China
| | - Chunbo Zhang
- School of Pharmacy, Nanchang University, 1299 Xuefu Road, Nanchang 330014, China; Department of Pathology and Institute of Molecular Pathology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
7
|
Jivad N, Heidari-Soureshjani S, Bagheri H, Sherwin CMT, Rostamian S. Anti-seizure Effects and Mechanisms of Berberine: A Systematic Review. Curr Pharm Biotechnol 2024; 25:2253-2265. [PMID: 38385486 DOI: 10.2174/0113892010283237240107121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Epilepsy is one of the most common in all age groups and disabling neurologic disorders around the world. OBJECTIVES This systematic review was to explore whether berberine (BBR) has any anti-seizure or anti-epileptic effects and also reviewed this possible mechanism. METHODS The EMBASE, Scopus, Cochrane Library, PubMed, and Web of Science databases were searched before Sep 2023. All types of studies that investigated the effects of BBR on epilepsy or chemical-induced seizures were eligible for inclusion. Two authors independently evaluated and reviewed titles/abstracts to identify publications for potential eligibility, and a third team member resolved discrepancies. Data were extracted in an Excel form, and the outcomes were discussed. RESULTS BBR showed its neuroprotective properties by reducing oxidative stress, neuroinflammation, and anti-apoptosis effects. It also increases brain-derived neurotrophic factor (BDNF) release and reduces transforming growth factor-beta (TGF-β1) and hypoxia-inducible factor 1α (HIF-1α). BBR by increasing scavenging reactive oxygen species (ROS), nuclear factor erythroid 2-related factor 2 (Nrf2), endogenous antioxidant enzymes, heme oxygenase-1 (HO-1), and inhibition of lipid peroxidation insert its antioxidant activity. Moreover, BBR showed antiinflammatory activity by reducing Interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) levels and through inhibiting cyclooxygenase-2 (COX-2), and including nuclear factor κB (NF-κB). In addition, it modulated c-fos expression and neuronal excitability in the brain. CONCLUSION BBR indicated promising anti-seizure effects with remarkable antioxidant, antiinflammatory, anti-apoptotic, and neuroprotective activity. Future studies should be based on well-designed clinical trial studies that are integrated with new methods related to increasing bioavailability.
Collapse
Affiliation(s)
- Nahid Jivad
- Department of Neurology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Hesamaldin Bagheri
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Catherine M T Sherwin
- Professor and Vice-Chair for Research, Pediatric Clinical Pharmacology and Toxicology, Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton Children's Hospital, One Children's Plaza, Dayton, Ohio, USA
| | | |
Collapse
|
8
|
Feng JH, Chen K, Shen SY, Luo YF, Liu XH, Chen X, Gao W, Tong YR. The composition, pharmacological effects, related mechanisms and drug delivery of alkaloids from Corydalis yanhusuo. Biomed Pharmacother 2023; 167:115511. [PMID: 37729733 DOI: 10.1016/j.biopha.2023.115511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
Corydalis yanhusuo W. T. Wang, also known as yanhusuo, yuanhu, yanhu and xuanhu, is one of the herb components of many Chinese Traditional Medicine prescriptions such as Jin Ling Zi San and Yuanhu-Zhitong priscription. C. yanhusuo was traditionally used to relieve pain and motivate blood and Qi circulation. Now there has been growing interest in pharmacological effects of alkaloids, the main bioactive components of C. yanhusuo. Eighty-four alkaloids isolated from C. yanhusuo are its important bioactive components and can be characterized into protoberberine alkaloids, aporphine alkaloids, opiate alkaloids and others and proper extraction or co-administration methods modulate their contents and efficacy. Alkaloids from C. yanhusuo have various pharmacological effects on the nervous system, cardiovascular system, cancer and others through multiple molecular mechanisms such as modulating neurotransmitters, ion channels, gut microbiota, HPA axis and signaling pathways and are potential treatments for many diseases. Plenty of novel drug delivery methods such as autologous red blood cells, self-microemulsifying drug delivery systems, nanoparticles and others have also been investigated to better exert the effects of alkaloids from C. yanhusuo. This review summarized the alkaloid components of C. yanhusuo, their pharmacological effects and mechanisms, and methods of drug delivery to lay a foundation for future investigations.
Collapse
Affiliation(s)
- Jia-Hua Feng
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Kang Chen
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Si-Yu Shen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yun-Feng Luo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xi-Hong Liu
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xin Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yu-Ru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
9
|
Chitolina R, Gallas-Lopes M, Reis CG, Benvenutti R, Stahlhofer-Buss T, Calcagnotto ME, Herrmann AP, Piato A. Chemically-induced epileptic seizures in zebrafish: A systematic review. Epilepsy Res 2023; 197:107236. [PMID: 37801749 DOI: 10.1016/j.eplepsyres.2023.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
The use of zebrafish as a model organism is gaining evidence in the field of epilepsy as it may help to understand the mechanisms underlying epileptic seizures. As zebrafish assays became popular, the heterogeneity between protocols increased, making it hard to choose a standard protocol to conduct research while also impairing the comparison of results between studies. We conducted a systematic review to comprehensively profile the chemically-induced seizure models in zebrafish. Literature searches were performed in PubMed, Scopus, and Web of Science, followed by a two-step screening process based on inclusion/exclusion criteria. Qualitative data were extracted, and a sample of 100 studies was randomly selected for risk of bias assessment. Out of the 1058 studies identified after removing duplicates, 201 met the inclusion criteria. We found that the most common chemoconvulsants used in the reviewed studies were pentylenetetrazole (n = 180), kainic acid (n = 11), and pilocarpine (n = 10), which increase seizure severity in a dose-dependent manner. The main outcomes assessed were seizure scores and locomotion. Significant variability between the protocols was observed for administration route, duration of exposure, and dose/concentration. Of the studies subjected to risk of bias assessment, most were rated as low risk of bias for selective reporting (94%), baseline characteristics of the animals (67%), and blinded outcome assessment (54%). Randomization procedures and incomplete data were rated unclear in 81% and 68% of the studies, respectively. None of the studies reported the sample size calculation. Overall, these findings underscore the need for improved methodological and reporting practices to enhance the reproducibility and reliability of zebrafish models for studying epilepsy. Our study offers a comprehensive overview of the current state of chemically-induced seizure models in zebrafish, highlighting the common chemoconvulsants used and the variability in protocol parameters. This may be particularly valuable to researchers interested in understanding the underlying mechanisms of epileptic seizures and screening potential drug candidates in zebrafish models.
Collapse
Affiliation(s)
- Rafael Chitolina
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Matheus Gallas-Lopes
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos G Reis
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Radharani Benvenutti
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Thailana Stahlhofer-Buss
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Neurobiologia e Neuroquímica da Excitabilidade Neuronal e Plasticidade Sináptica (NNNESP Lab), Departamento de bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana P Herrmann
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
10
|
Knap B, Nieoczym D, Kundap U, Kusio-Targonska K, Kukula-Koch W, Turski WA, Gawel K. Zebrafish as a robust preclinical platform for screening plant-derived drugs with anticonvulsant properties-a review. Front Mol Neurosci 2023; 16:1221665. [PMID: 37701853 PMCID: PMC10493295 DOI: 10.3389/fnmol.2023.1221665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 09/14/2023] Open
Abstract
Traditionally, selected plant sources have been explored for medicines to treat convulsions. This continues today, especially in countries with low-income rates and poor medical systems. However, in the low-income countries, plant extracts and isolated drugs are in high demand due to their good safety profiles. Preclinical studies on animal models of seizures/epilepsy have revealed the anticonvulsant and/or antiepileptogenic properties of, at least some, herb preparations or plant metabolites. Still, there is a significant number of plants known in traditional medicine that exert anticonvulsant activity but have not been evaluated on animal models. Zebrafish is recognized as a suitable in vivo model of epilepsy research and is increasingly used as a screening platform. In this review, the results of selected preclinical studies are summarized to provide credible information for the future development of effective screening methods for plant-derived antiseizure/antiepileptic therapeutics using zebrafish models. We compared zebrafish vs. rodent data to show the translational value of the former in epilepsy research. We also surveyed caveats in methodology. Finally, we proposed a pipeline for screening new anticonvulsant plant-derived drugs in zebrafish ("from tank to bedside and back again").
Collapse
Affiliation(s)
- Bartosz Knap
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Uday Kundap
- Canada East Spine Center, Saint John Regional Hospital, Horizon Health Center, Saint John, NB, Canada
| | - Kamila Kusio-Targonska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University, Lublin, Poland
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
11
|
Ou-Yang T, Zhang Y, Luo HZ, Liu Y, Ma SC. Novel compounds discovery approach based on UPLC-QTOF-MS/MS chemical profile reveals birch bark extract anti-inflammatory, -oxidative, and -proliferative effects. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116148. [PMID: 36634723 DOI: 10.1016/j.jep.2023.116148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Betula pendula subsp. Mandshurica (Regel) Ashburner & McAll. Cortex (birch bark) is a globally traditional medicine for treating multiple inflammatory diseases. Its records are included in the Compendium of Materia Medica and other ancient medical literatures. However, uncovering its chemical profile and exploring novel biologically active compounds from birch bark remains a significant challenge. AIM OF THE STUDY To uncover the anti-inflammatory, -oxidative, and -proliferative mechanisms and potentially effective compounds of birch bark extract by combing chemical profiling, isolation, identification, together with in vivo, in vitro, and silico evaluation. MATERIALS AND METHODS Ultra-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS) was used to obtain the chemical profile of birch bark extract. The new compounds were obtained via column chromatography and analyzed using X-ray diffraction and electronic circular dichroism for absolute configuration confirmation. The zebrafish caudal fin inflammation-induced model, qPCR, and Western blot analysis were used to explore the effects and underlying mechanisms of birch bark extract. In vitro cytotoxicity assays and kinases screening conducted to gain preliminary insight into the anti-proliferative effects of birch bark extract and its isolated compounds. In addition, in-silico molecular docking was performed to investigate the putative mechanism. RESULTS UPLC-QTOF-MS/MS chemical profiles revealed 105 compounds in birch bark extract, with 80 of these were first reported in B. pendula subsp. Mandshurica cortex. We selected five compounds speculated as novel and isolated three ones (one triterpenoid derivative and two lupine series triterpenoids) for further analysis. Birch bark extract exerted antioxidative and anti-inflammatory effects on zebrafish, as shown by the downregulated reactive oxygen species levels and COX-2α, IL-1β, and TNF-α expression, which occurred through NF-ĸB signaling pathway activation. The in vitro anti-proliferative effects of birch bark extract and compound 44 were also unveiled. Moreover, the putative anti-tumor mechanism of compound 44 was revealed using kinase screening and in-silico molecular docking. CONCLUSIONS This study provided a predictable chemical profile and demonstrated the pharmacological effects of birch bark extract, elucidated the mechanism of this traditional Chinese medicine and suggested it as a novel anti-cancer candidate.
Collapse
Affiliation(s)
- Ting Ou-Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Yi Zhang
- Jiangxi Qingfeng Pharmaceutical Co., Ltd, Ganzhou, Jiangxi, 341000, PR China
| | - Heng-Zhen Luo
- Jiangxi Qingfeng Pharmaceutical Co., Ltd, Ganzhou, Jiangxi, 341000, PR China
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Shuang-Cheng Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China; Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, PR China.
| |
Collapse
|
12
|
Wen X, Zhou X, Guo L. Berberine Inhibits Endothelial Cell Proliferation via Repressing ERK1/2 Pathway. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231152690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Abnormal angiogenesis plays a key role in cancer progression. In recent years, anti-angiogenic therapy has attracted increasing attention. Berberine (BBR), the main component extracted from Coptis (Ranunculaceae) rhizome, has an anti-angiogenic effect. However, the underlying mechanisms remain to be elucidated. Endothelial cell proliferation is a pivotal process in angiogenesis. In our research, we observed that BBR specifically downregulated the expression of the extracellular signal-regulated kinase 1/2 (ERK1/2) protein in human umbilical vein endothelial cells (HUVECs). The role of BBR in HUVEC proliferation was then assessed using methylthiazolyldiphenyl-tetrazolium bromide and cell counting Kit-8 (CCK-8) assays. The effect of BBR on the ERK1/2 signaling pathway was evaluated using Western blotting. BBR decreased HUVEC proliferation in a dose-dependent manner and inhibited the expression of phospho-ERK1/2 in HUVECs. PD98059, a specific inhibitor of ERK1/2 signaling, attenuated the BBR-induced decrease in the proliferation of HUVECs. Phorbol 12-myristate 13-acetate, a natural activator of ERK1/2 signaling, did not alter BBR-induced proliferation. In conclusion, BBR inhibited endothelial cell proliferation by suppressing ERK1/2 signaling. These findings may provide a potential therapeutic strategy for suppressing tumor growth.
Collapse
Affiliation(s)
- Xiaoqing Wen
- Department of General Practice, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Xia Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ling Guo
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Oianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, Shandong, China
| |
Collapse
|
13
|
Tavakoli Z, Tahmasebi Dehkordi H, Lorigooini Z, Rahimi-Madiseh M, Korani MS, Amini-Khoei H. Anticonvulsant effect of quercetin in pentylenetetrazole (PTZ)-induced seizures in male mice: The role of anti-neuroinflammatory and anti-oxidative stress. Int Immunopharmacol 2023; 116:109772. [PMID: 36731152 DOI: 10.1016/j.intimp.2023.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/26/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Epilepsy is one of the major neurological disorders. The inflammatory process and oxidative stress are closely related to seizure progression. Quercetin is a flavonoid with anti-inflammatory and antioxidant properties as well as neuroprotective effects. We aimed to evaluate the effect of quercetin on pentylenetetrazole- (PTZ-) induced seizures in male mice focusing on its possible anti-neuroinflammatory and anti-oxidative stress. METHODS In this study, 50 male NMRI mice were divided into five groups (n = 10) and given the following treatments: normal saline, quercetin at doses of 10, 20, and 40 mg/kg, and diazepam at a dose of 10 mg/kg. In order to induce seizures, PTZ was administered intravenously. Drugs were administered intravenously 60 min before the seizure induction. The seizure threshold was measured, and finally, malondialdehyde (MDA), total antioxidant capacity (TAC), and the gene expression of IL-1β, TNF-α, NLRP3, and iNOS were determined in the prefrontal cortex. RESULTS It was confirmed that quercetin increased the seizure threshold. And quercetin increased TAC, and decreased levels of MDA as well as gene expression of TNF- α, NLRP3, IL-1β, and iNOS in the prefrontal cortex at the time of seizure induction. CONCLUSION It was suggested that the anticonvulsant effect of quercetin in PTZ-induced seizures in mice may be due to the reduction of inflammatory responses and oxidative stress in the prefrontal cortex.
Collapse
Affiliation(s)
- Zahra Tavakoli
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rahimi-Madiseh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrdad Shahrani Korani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
14
|
Zhong L, Lin Y, Gong S, Wu X, Liu Y, Chen J, Li Y, Yan F, Su Z, Xie Q. Oxyberberrubine, a novel liver microsomes-mediated secondary metabolite of berberine, alleviates hyperuricemic nephropathy in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154521. [PMID: 36334387 DOI: 10.1016/j.phymed.2022.154521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/01/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Berberrubine (BRB), one of the major metabolites of berberine (BBR), exerts an anti-hyperuricemic effect even superior to BBR. Liver is an important location for drug transformation. Nevertheless, there are few studies on the bioactivities and metabolites of BRB. PURPOSE We investigated whether oxyberberrubine (OBR), a liver metabolite of BRB, exerted urate-lowering and reno-protective effects in hyperuricemic mice. METHODS Liver microsomes were used to incubate BRB for studying its biotransformation. We isolated and identified its new metabolite OBR, and investigated its anti-hyperuricemic and reno-protective effects. In this work, the hyperuricemic mice model was established by receiving potassium oxonate (PO) and hypoxanthine (HX) for 7 consecutive days. 1 h after modeling, different dosages of OBR (5, 10 and 20 mg/kg), BRB (20 mg/kg) or febuxostat (Fex, 5 mg/kg) were given mice by gavage. RESULTS Results showed that OBR possessed potent anti-hyperuricemic and reno-protective effects in hyperuricemic mice. Serum uric acid (UA) level was lowered, and the activities of xanthine oxidase (XOD) as well as adenosine deaminase (ADA) in the liver were suppressed after treatment with OBR. Hepatic expressions of XOD were remarkably decreased at mRNA and protein levels by OBR treatment. In addition, OBR prominently alleviated renal injury, embodied in markedly reduced serum creatinine and blood urea nitrogen (BUN) levels, decreased inflammatory mediators (TNF-α, IL-1β, IL-6 and IL-18) levels, mRNA expression of CYP27B1 and repairment of renal tissues damage. Besides, OBR down-regulated renal expression of urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), NOD-like receptor 3 (NLRP3), apoptosis-associated speck-like protein containing CARD (ASC), and caspase-1 at mRNA and protein levels. CONCLUSIONS In short, our study indicated that OBR possessed superior anti-hyperuricemic and reno-protective effects, at least in part, through the inhibition of XOD, URAT1, GLUT9 and NLRP3 inflammasome signaling pathway in the kidney.
Collapse
Affiliation(s)
- Linjiang Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yinsi Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Shiting Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xiaoyan Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Fan Yan
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Qingfeng Xie
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Qi Yu-ru Academic Experience Inheritance Studio, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, PR China.
| |
Collapse
|
15
|
Ghavipanje N, Fathi Nasri MH, Vargas-Bello-Pérez E. An insight into the potential of berberine in animal nutrition: Current knowledge and future perspectives. J Anim Physiol Anim Nutr (Berl) 2022; 107:808-829. [PMID: 36031857 DOI: 10.1111/jpn.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/10/2022] [Accepted: 08/06/2022] [Indexed: 11/30/2022]
Abstract
In animal nutrition, the interest for novel feed additives has expanded with elevating industry standards and consumer awareness besides the demand for healthy animal-derived food products. Consumer and animal health are leading concerns dictating the importance of novel animal feed additives. Berberine (BBR) is a natural pentacyclic isoquinoline alkaloid that has exhibited diverse pharmacological properties, including metabolism-regulating, hepatoprotective, and inflammatory alleviative in addition to its antioxidant activity. Despite detailed information on cellular mechanisms associated with BBR therapeutics, and strong clinical evidence, only a few studies have focused on BBR applied to animal nutrition. However, great pieces of evidence have shown that dietary BBR supplementation could result in improved growth performance, enhanced oxido-inflammatory markers, and mitigated metabolic dysfunctions in both monogastric and ruminant animals. The data discussed in the present review may set the basis for further research on BBR in animal diets for developing novel strategies aiming to improve animal health as well as products with beneficial properties for humans.
Collapse
Affiliation(s)
- Navid Ghavipanje
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | | | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| |
Collapse
|
16
|
Zhao Y, Zhou H, Liu Q, Liu J, Wu M, Yuan S, Xu W, Wang Y, Wang K, Li L, Liu J. Chinese Herbal Medicine Combined With Antiepileptic Drugs for Intractable Epilepsy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Pharmacol 2022; 13:917099. [PMID: 37090900 PMCID: PMC10117129 DOI: 10.3389/fphar.2022.917099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/20/2022] [Indexed: 04/09/2023] Open
Abstract
Background: Intractable epilepsy (IE) is still a major concern in neurology, and existing therapies do not adequately control symptoms. Chinese Herbal Medicine (CHM) has been widely used as an adjunct to antiepileptic drugs (AEDs) for IE. However, because of the contradictory findings reported in previous studies, it is uncertain if the present evidence is robust enough to warrant its usage. The purpose of this meta-analysis was to systematically evaluate the efficacy of the combination of CHM and AEDs for IE.Methods: From inception to September 2021, Medline, Ovid, Embase, Cochrane Library, Chinese Biomedical Database, China National Knowledge Infrastructure, VIP Database, and Wanfang Database were searched. Only randomized controlled trials (RCTs) that assessed the efficacy of the combination of CHM and AEDs for IE were included. We defined monthly seizure frequency as the primary outcome. The secondary outcomes included the abnormal rate of electroencephalogram (EEG), seizure duration, quality of life (QoL), and adverse events (AEs).Results: Twenty studies with 1,830 patients were enrolled. Most trials had poor methodological quality. The meta-analysis showed that the combination of CHM and AEDs was more efficient than AEDs alone in reducing monthly seizure frequency [MD = −1.26%, 95% CI (−1.62, −0.91); p < 0.00001], the abnormal rate of EEG [RR = 0.66%, 95% CI (0.53, 0.82); p = 0.0002], and improving the QoL [MD = 6.96%, 95% CI (3.44, 10.49); p = 0.0001]. There was no significant difference in seizure duration between groups. Moreover, the combination of CHM and AEDs significantly reduced the AEs [RR = 0.45%, 95% CI (0.32, 0.64); p < 0.00001].Conclusion: The combination of CHM and AEDs could improve seizure control by reducing monthly seizure frequency and abnormal rate of EEG with a decreased risk of adverse events in patients with IE. However, these findings must be interpreted carefully due to the high or uncertain risk of bias in the included trials. To provide stronger evidence for the use of CHM combined with AEDs in IE, high-quality RCTs will be urgently warranted in the future.
Collapse
Affiliation(s)
- Ying Zhao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hufang Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qingxuan Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jialin Liu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mengwei Wu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Siyuan Yuan
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Weiwei Xu
- Beijing University of Chinese Medicine, Beijing, China
| | - Ying Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Kaiyue Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Lili Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Jinmin Liu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Jinmin Liu,
| |
Collapse
|
17
|
Chen H, Siu SWI, Wong CTT, Qiu J, Cheung AKK, Lee SMY. Anti-epileptic Kunitz-like peptides discovered in the branching coral Acropora digitifera through transcriptomic analysis. Arch Toxicol 2022; 96:2589-2608. [PMID: 35604417 DOI: 10.1007/s00204-022-03311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022]
Abstract
Approximately 50 million people are suffering from epilepsy worldwide. Corals have been used for treating epilepsy in traditional Chinese medicine, but the mechanism of this treatment is unknown. In this study, we analyzed the transcriptome of the branching coral Acropora digitifera and obtained its Kyoto Encyclopedia of Genes and Genomes (KEGG), EuKaryotic Orthologous Groups (KOG) and Gene Ontology (GO) annotation. Combined with multiple sequence alignment and phylogenetic analysis, we discovered three polypeptides, we named them AdKuz1, AdKuz2 and AdKuz3, from A. digitifera that showed a close relationship to Kunitz-type peptides. Molecular docking and molecular dynamics simulation indicated that AdKuz1 to 3 could interact with GABAA receptor but AdKuz2-GABAA remained more stable than others. The biological experiments showed that AdKuz1 and AdKuz2 exhibited an anti-inflammatory effect by decreasing the aberrant level of nitric oxide (NO), IL-6, TNF-α and IL-1β induced by LPS in BV-2 cells. In addition, the pentylenetetrazol (PTZ)-induced epileptic effect on zebrafish was remarkably suppressed by AdKuz1 and AdKuz2. AdKuz2 particularly showed superior anti-epileptic effects compared to the other two peptides. Furthermore, AdKuz2 significantly decreased the expression of c-fos and npas4a, which were up-regulated by PTZ treatment. In addition, AdKuz2 reduced the synthesis of glutamate and enhanced the biosynthesis of gamma-aminobutyric acid (GABA). In conclusion, the results indicated that AdKuz2 may affect the synthesis of glutamate and GABA and enhance the activity of the GABAA receptor to inhibit the symptoms of epilepsy. We believe, AdKuz2 could be a promising anti-epileptic agent and its mechanism of action should be further investigated.
Collapse
Affiliation(s)
- Hanbin Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.,Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shirley Weng In Siu
- Institute of Science and Environment, University of Saint Joseph, Macao, China
| | - Clarence Tsun Ting Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jianwen Qiu
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Alex Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Simon Ming Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China. .,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
| |
Collapse
|
18
|
Du K, He M, Zhao D, Wang Y, Ma C, Liang H, Wang W, Min D, Xue L, Guo F. Mechanism of cell death pathways in status epilepticus and related therapeutic agents. Biomed Pharmacother 2022; 149:112875. [PMID: 35367755 DOI: 10.1016/j.biopha.2022.112875] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
The most severe form of epilepsy, status epilepticus (SE), causes brain damage and results in the development of recurring seizures. Currently, the management of SE remains a clinical challenge because patients do not respond adequately to conventional treatments. Evidence suggests that neural cell death worsens the occurrence and progression of SE. The main forms of cell death are apoptosis, necroptosis, pyroptosis, and ferroptosis. Herein, these mechanisms of neuronal death in relation to SE and the alleviation of SE by potential modulators that target neuronal death have been reviewed. An understanding of these pathways and their possible roles in SE may assist in the development of SE therapies and in the discovery of new agents.
Collapse
Affiliation(s)
- Ke Du
- Department of Pharmacology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | - Miao He
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | - Dongyi Zhao
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | - Yuting Wang
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | - Chao Ma
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongyue Liang
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209Tongshan Rd, Xuzhou 221002, China
| | - Dongyu Min
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China.
| | - Lei Xue
- China Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China.
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China.
| |
Collapse
|
19
|
Shou JW, Shaw PC. Therapeutic Efficacies of Berberine against Neurological Disorders: An Update of Pharmacological Effects and Mechanisms. Cells 2022; 11:cells11050796. [PMID: 35269418 PMCID: PMC8909195 DOI: 10.3390/cells11050796] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Neurological disorders are ranked as the leading cause of disability and the second leading cause of death worldwide, underscoring an urgent necessity to develop novel pharmacotherapies. Berberine (BBR) is a well-known phytochemical isolated from a number of medicinal herbs. BBR has attracted much interest for its broad range of pharmacological actions in treating and/or managing neurological disorders. The discoveries in basic and clinical studies of the effects of BBR on neurological disorders in the last decade have provided novel evidence to support the potential therapeutical efficacies of BBR in treating neurological diseases. In this review, we summarized the pharmacological properties and therapeutic applications of BBR against neurological disorders in the last decade. We also emphasized the major pathways modulated by BBR, which provides firm evidence for BBR as a promising drug candidate for neurological disorders.
Collapse
Affiliation(s)
- Jia-Wen Shou
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 852852, China;
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 852852, China;
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 852852, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants and Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 852852, China
- Correspondence:
| |
Collapse
|
20
|
Gwedela MNV, Terai H, Lampiao F, Matsunami K, Aizawa H. Anti-seizure effects of medicinal plants in Malawi on pentylenetetrazole-induced seizures in zebrafish larvae. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114763. [PMID: 34688800 DOI: 10.1016/j.jep.2021.114763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants are used to manage and treat epilepsy in Malawi because of traditional beliefs and barriers to conventional anti-seizure drugs. Among the plants prescribed by traditional medical practitioners are Margaritaria discoidea, Dalbergia boehmii, Dalbergia nitidula, Catunaregam spinosa, and Lannea discolor. Despite the wide use of these plants, there is a lack of scientific evidence to support their anti-seizure efficacy. AIM OF THE STUDY This study used the pentylenetetrazole (PTZ)-induced larval zebrafish seizure model to screen for anti-seizure effects of a collection of medicinal plants traditionally used in Malawi. MATERIALS AND METHODS Zebrafish larvae were incubated in decoctions at maximum tolerated concentrations for 18 h and exposed to PTZ. As a primary screen, the effects of the decoctions on seizure-induced locomotor activity were determined. Decoctions that significantly reduced total distance traveled were further checked for effects on seizure latency and frequency, brain activity, immediate early gene expression, and c-fos protein expression. RESULTS M. discoidea male leaves, D. boehmii roots, and D. nitidula leaves showed significant anti-seizure effects in the primary screen and were selected for further study. Electrophysiological and immediate early gene analyses corroborated anti-seizure effect of D. boehmii and D. nitidula. The results of c-fos protein expression further suggested that the anti-seizure effects in the larval brain may be mediated by the suppression of neurons localized in midbrain regions. CONCLUSIONS These findings provide pioneering scientific evidence of the presence of anti-seizure activity in M. discoidea, D. boehmii, and D. nitidula, prescribed by traditional Malawian medical practitioners. Further studies are needed to identify and isolate compounds responsible for such biological activities and elucidate the possible mechanisms of action.
Collapse
Affiliation(s)
- Mayeso Naomi Victoria Gwedela
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Haruhi Terai
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Fanuel Lampiao
- Africa Centre of Excellence in Public Health and Herbal Medicine, Kamuzu University of Health Sciences, Private Bag 360, Blantyre, Malawi
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Hidenori Aizawa
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan.
| |
Collapse
|
21
|
Berberine and its derivatives represent as the promising therapeutic agents for inflammatory disorders. Pharmacol Rep 2022; 74:297-309. [PMID: 35083737 DOI: 10.1007/s43440-021-00348-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
Berberine, with the skeleton of quaternary ammonium, has been considered as the well-defined natural product in treating multiple diseases, including inflammation, acute and chronic infection, autoimmune diseases, and diabetes. However, due to the low bioavailability and systemic exposure, broad clinical applications of berberine have been largely impeded. Numerous studies have been conducted to further explore the therapeutic capacities of berberine in preclinical and clinical trials. Over the past, berberine and its derivatives have been shown to possess numerous pharmacological activities, as evidenced in intestinal, pulmonary, skin, and bone inflammatory disorders. In the present review, the pharmacological impact of berberine on inflammatory diseases are fully discussed, with indication that berberine and its potential derivatives represent promising natural therapeutic agents with anti-inflammatory properties.
Collapse
|
22
|
Ren Q, Gao D, Mou L, Zhang S, Zhang M, Li N, Sik A, Jin M, Liu K. Anticonvulsant activity of melatonin and its success in ameliorating epileptic comorbidity-like symptoms in zebrafish. Eur J Pharmacol 2021; 912:174589. [PMID: 34699755 DOI: 10.1016/j.ejphar.2021.174589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/08/2023]
Abstract
Epilepsy is one of common neurological disorders, greatly distresses the well-being of the sufferers. Melatonin has been used in clinical anti-epileptic studies, but its effect on epileptic comorbidities is unknown, and the underlying mechanism needs further investigation. Herein, by generating PTZ-induced zebrafish seizure model, we carried out interdisciplinary research using neurobehavioral assays, bioelectrical detection, molecular biology, and network pharmacology to investigate the activity of melatonin as well as its pharmacological mechanisms. We found melatonin suppressed seizure-like behavior by using zebrafish regular locomotor assays. Zebrafish freezing and bursting activity assays revealed the ameliorative effect of melatonin on comorbidity-like symptoms. The preliminary screening results of neurobehavioral assays were further verified by the expression of key genes involved in neuronal activity, neurodevelopment, depression and anxiety, as well as electrical signal recording from the midbrain of zebrafish. Subsequently, network pharmacology was introduced to identify potential targets of melatonin and its pathways. Real-time qPCR and protein-protein interaction (PPI) were conducted to confirm the underlying mechanisms associated with glutathione metabolism. We also found that melatonin receptors were involved in this process, which were regulated in response to melatonin exposure before PTZ treatment. The antagonists of melatonin receptors affected anticonvulsant activity of melatonin. Overall, current study revealed the considerable ameliorative effects of melatonin on seizure and epileptic comorbidity-like symptoms and unveiled the underlying mechanism. This study provides an animal model for the clinical application of melatonin in the treatment of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Qingyu Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Lei Mou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Mengqi Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Attila Sik
- Institute of Physiology, Medical School, University of Pecs, Pecs, H-7624, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, H-7624, Hungary; Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| |
Collapse
|
23
|
Wang L, Sheng W, Tan Z, Ren Q, Wang R, Stoika R, Liu X, Liu K, Shang X, Jin M. Treatment of Parkinson's disease in Zebrafish model with a berberine derivative capable of crossing blood brain barrier, targeting mitochondria, and convenient for bioimaging experiments. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109151. [PMID: 34343700 DOI: 10.1016/j.cbpc.2021.109151] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022]
Abstract
Berberine is a famous alkaloid extracted from Berberis plants and has been widely used as medications and functional food additives. Recent studies reveal that berberine exhibits neuroprotective activity in animal models of Parkinson's disease (PD), the second most prevalent neurodegenerative disorders all over the world. However, the actual site of anti-PD action of berberine remains largely unknown. To this end, we employed a fluorescently labeled berberine derivative BBRP to investigate the subcellular localization and blood brain barrier (BBB) permeability in a cellular model of PD and zebrafish PD model. Biological investigations revealed that BBRP retained the neuroprotective activity of berberine against PD-like symptoms in PC12 cells and zebrafish, such as protecting 6-OHDA induced cell death, relieving MPTP induced PD-like behavior and increasing dopaminergic neuron loss in zebrafish. We also found that BBRP could readily penetrate BBB and function in the brain of zebrafish suffering from PD. Subcellular localization study indicated that BBRP could rapidly and specifically accumulate in mitochondria of PC12 cells when it exerted anti-PD effect. In addition, BBRP could suppress accumulation of Pink1 protein and inhibit the overexpression of LC3 protein in 6-OHDA damaged cells. All these results suggested that the potential site of action of berberine is mitochondria in the brain under the PD condition. Therefore, the findings described herein would be useful for further development of berberine as an anti-PD drug.
Collapse
Affiliation(s)
- Lizhen Wang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, Shandong Province, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, Shandong Province, China
| | - Zhaoshun Tan
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, Shandong Province, China
| | - Qingyu Ren
- School of Psychology and mental health, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, Shandong Province, China
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv 79005, Ukraine
| | - Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80303, United States of America
| | - Kechun Liu
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, Shandong Province, China
| | - Xueliang Shang
- School of Psychology and mental health, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, China.
| | - Meng Jin
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, Shandong Province, China.
| |
Collapse
|
24
|
Bertoncello KT, Bonan CD. Zebrafish as a tool for the discovery of anticonvulsant compounds from botanical constituents. Eur J Pharmacol 2021; 908:174342. [PMID: 34265297 DOI: 10.1016/j.ejphar.2021.174342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/23/2021] [Accepted: 07/11/2021] [Indexed: 02/06/2023]
Abstract
Epilepsy affects about 65 million people in the world, which makes this disease a public health problem. In addition to the incidence of recurrent seizures, this neurological condition also culminates in cognitive, psychological, behavioral, and social consequences to the patients. Epilepsy treatment is based on the use of drugs that aim to inhibit repetitive neuronal discharges, and consequently, the recurrence of seizures. However, despite the large number of antiepileptic drugs currently available, about 30-40% of patients with epilepsy do not respond satisfactorily to treatments. Therefore, the investigation of new therapeutic alternatives for epilepsy becomes relevant, especially the search for new compounds with anticonvulsant properties. The therapeutic potential of plant-derived bioactive compounds has been a target for alternative treatments for epilepsy. The use of animal models for drug screening, such as zebrafish, contributes to a better understanding of the mechanisms involved in seizures and for investigating methods and alternative treatments to decrease seizure incidence. The sensitivity of zebrafish to chemoconvulsants and its use in genetic approaches reinforces the contribution of this animal to epilepsy research. Moreover, we summarize advances in zebrafish-based studies that focus on plant-derived bioactive compounds with potential antiseizure properties, contributing to the screening of new drugs for epilepsy treatment.
Collapse
Affiliation(s)
- Kanandra Taisa Bertoncello
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
25
|
Badawi GA, Shokr MM, Zaki HF, Mohamed AF. Pentoxifylline prevents epileptic seizure via modulating HMGB1/RAGE/TLR4 signalling pathway and improves memory in pentylenetetrazol kindling rats. Clin Exp Pharmacol Physiol 2021; 48:1111-1124. [PMID: 33899956 DOI: 10.1111/1440-1681.13508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
Epilepsy is a chronic widely prevalent neurologic disorder, affecting brain functions with a broad spectrum of deleterious consequences. High mobility group box1 (HMGB1) is a nuclear non-histone protein that targets vital cell receptor of toll-like receptor 4 (TLR4) and advanced glycation end products (RAGE). HMGB1 mediated TLR4/RAGE cascade has been scored as a key culprit in neuroinflammatory signalling that critically evokes development of impaired cognition and epilepsy. The current study aimed to investigate the neuroprotective effect of pentoxifylline (PTX) on pentylenetetrazol (PTZ)-kindling rats by its anti-inflammatory/antioxidant capacity and its impact on memory and cognition were investigated, too. PTZ was intraperitoneally injected 35 mg/kg, every 48 h, for 14 doses, to evoke kindling model. Phenytoin (30 mg/kg, i.p.) and PTX (60 mg/kg, i.p.) or their combination were given once daily for 27 days. PTX treatment showed a statistically significant effect on behavioural, histopathological and neurochemical analysis. PTX protected the PTZ kindling rats from epileptic seizures and improved memory and cognitive impairment through the Morris water maze (MWM) test. Furthermore, PTX reversed PTZ hippocampal neuronal loss by decreasing protein expression of amyloid-β peptide (Aβ), Tau and β site-amyloid precursor protein cleavage enzyme 1 (BACE1), associated with a marked reduction in expression of inflammatory mediators such as HMGB1, TL4, and RAGE proteins. Furthermore, PTX inhibited hippocampal apoptotic caspase 1 protein, total reactive oxygen species (TROS) along with upregulated erythroid 2-related factor 2 (Nrf2) content. In conclusion, PTX or its combination with phenytoin represent a promising drug to inhibit the epilepsy progression via targeting the HMGB1/TLR4/RAGE signalling pathway.
Collapse
Affiliation(s)
- Ghada A Badawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, EL-Arish, Egypt
| | - Mustafa M Shokr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, EL-Arish, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
26
|
Wang L, Kong H, Jin M, Li X, Stoika R, Lin H, Liu K. Synthesis of disaccharide modified berberine derivatives and their anti-diabetic investigation in zebrafish using a fluorescence-based technology. Org Biomol Chem 2021; 18:3563-3574. [PMID: 32347284 DOI: 10.1039/d0ob00327a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Berberine is a naturally occurring isoquinoline alkaloid and has been used as an important functional food additive in China due to its various pharmacological activities. Berberine exhibits great potential for developing anti-diabetic agents against type 2 diabetes mellitus (T2DM), as it can reduce the blood glucose level in many animal models. However, the low anti-diabetic activity and poor bioavailability of berberine (below 5%) by oral administration significantly limit its practical applications. To solve these problems, this article focuses on the structural modification of berberine using some disaccharide groups, because the carbohydrate moiety has been proved to improve the bioavailability and enhance the receptor-binding affinity of drugs. Anti-diabetic investigation of the synthesized compounds was performed in a zebrafish model using a fluorescently labelled glucose analog 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-d-glucose (2-NBDG) as a glucose tracker. The results indicated that the modification of berberine with carbohydrate groups could give derivatives with improved anti-diabetic activity, in particular the diglucose modified berberine derivative 1 which could dramatically promote the uptake of 2-NBDG in both zebrafish larvae and their eyes even at very low concentrations. Furthermore, the fluorescence-based anti-diabetic investigation method in zebrafish shows great potential for anti-diabetic drug screening.
Collapse
Affiliation(s)
- Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong Province, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Dang J, Paudel YN, Yang X, Ren Q, Zhang S, Ji X, Liu K, Jin M. Schaftoside Suppresses Pentylenetetrazol-Induced Seizures in Zebrafish via Suppressing Apoptosis, Modulating Inflammation, and Oxidative Stress. ACS Chem Neurosci 2021; 12:2542-2552. [PMID: 34128378 DOI: 10.1021/acschemneuro.1c00314] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The lack of disease-modifying therapeutic strategies against epileptic seizures has caused a surge in preclinical research focused on exploring and developing novel therapeutic candidates for epilepsy. Compounds from traditional Chinese medicines (TCMs) have gained much attention for a plethora of neurological diseases, including epilepsy. Herein, for the first time, we evaluated the anticonvulsive effects of schaftoside (SS), a TCM, on pentylenetetrazol (PTZ)-induced epileptic seizures in zebrafish and examined the underlying mechanisms. We observed that SS pretreatments significantly suppressed seizure-like behavior and prolonged the onset of seizures. Zebrafish larvae pretreated with SS demonstrated downregulation of c-fos expression during seizures. PTZ-induced upregulation of apoptotic cells was decreased upon pretreatment with SS. Inflammatory phenomena during seizure progression including the upregulation of interleukin 6 (IL-6), interleukin 1 beta (IL-1β), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were downregulated upon pretreatment with SS. The PTZ-induced recruitment of immunocytes was in turn reduced upon SS pretreatment. Moreover, SS pretreatment modulated oxidative stress, as demonstrated by decreased levels of catalase (CAT) and increased levels of glutathione peroxidase-1a (GPx1a) and manganese superoxide dismutase (Mn-SOD). However, pretreatment with SS modulated the PTZ-induced downregulation of the relative enzyme activity of CAT, GPx, and SOD. Hence, our findings suggest that SS pretreatment ameliorates PTZ-induced seizures, suppresses apoptosis, and downregulates the inflammatory response and oxidative stress, which potentially protect against further seizures in zebrafish.
Collapse
Affiliation(s)
- Jiao Dang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Xueliang Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
| | - Qingyu Ren
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang’shan 063210, Hebei Province, People’s Republic of China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
| | - Xiuna Ji
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji’nan 250103, Shandong Province, People’s Republic of China
| |
Collapse
|
28
|
Li DD, Yu P, Xiao W, Wang ZZ, Zhao LG. Berberine: A Promising Natural Isoquinoline Alkaloid for the Development of Hypolipidemic Drugs. Curr Top Med Chem 2021; 20:2634-2647. [PMID: 32901585 DOI: 10.2174/1568026620666200908165913] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
Berberine, as a representative isoquinoline alkaloid, exhibits significant hypolipidemic activity in both animal models and clinical trials. Recently, a large number of studies on the lipid-lowering mechanism of berberine and studies for improving its hypolipidemic activity have been reported, but for the most part, they have been either incomplete or not comprehensive. In addition, there have been a few specific reviews on the lipid-reducing effect of berberine. In this paper, the physicochemical properties, the lipid-lowering mechanism, and studies of the modification of berberine all are discussed to promote the development of berberine as a lipid-lowering agent. Subsequently, this paper provides some insights into the deficiencies of berberine in the study of lipid-lowering drug, and based on the situation, some proposals are put forward.
Collapse
Affiliation(s)
- Dong-Dong Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China,College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Pan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China,College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd., 58 Haichang South Road, Lianyungang 222001, China
| | - Zhen-Zhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., 58 Haichang South Road, Lianyungang 222001, China
| | - Lin-Guo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China,College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| |
Collapse
|
29
|
Lin FJ, Li H, Wu DT, Zhuang QG, Li HB, Geng F, Gan RY. Recent development in zebrafish model for bioactivity and safety evaluation of natural products. Crit Rev Food Sci Nutr 2021; 62:8646-8674. [PMID: 34058920 DOI: 10.1080/10408398.2021.1931023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zebrafish is a species of freshwater fish, popular in aquariums and laboratories. Several advantageous features have facilitated zebrafish to be extensively utilized as a valuable vertebrate model in the lab. It has been well-recognized that natural products possess multiple health benefits for humans. With the increasing demand for natural products in the development of functional foods, nutraceuticals, and natural cosmetics, the zebrafish has emerged as an unprecedented tool for rapidly and economically screening and identifying safe and effective substances from natural products. This review first summarized the key factors for the management of zebrafish in the laboratory, followed by highlighting the current progress on the establishment and applications of zebrafish models in the bioactivity evaluation of natural products. In addition, the zebrafish models used for assessing the potential toxicity or health risks of natural products were involved as well. Overall, this review indicates that zebrafish are promising animal models for the bioactivity and safety evaluation of natural products, and zebrafish models can accelerate the discovery of novel natural products with potential health functions.
Collapse
Affiliation(s)
- Fang-Jun Lin
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Hang Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Qi-Guo Zhuang
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Ren-You Gan
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China.,Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
30
|
Paudel YN, Othman I, Shaikh MF. Anti-High Mobility Group Box-1 Monoclonal Antibody Attenuates Seizure-Induced Cognitive Decline by Suppressing Neuroinflammation in an Adult Zebrafish Model. Front Pharmacol 2021; 11:613009. [PMID: 33732146 PMCID: PMC7957017 DOI: 10.3389/fphar.2020.613009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/27/2020] [Indexed: 12/31/2022] Open
Abstract
Epilepsy is a chronic brain disease afflicting around 70 million global population and is characterized by persisting predisposition to generate epileptic seizures. The precise understanding of the etiopathology of seizure generation is still elusive, however, brain inflammation is considered as a major contributor to epileptogenesis. HMGB1 protein being an initiator and crucial contributor of inflammation is known to contribute significantly to seizure generation via activating its principal receptors namely RAGE and TLR4 reflecting a potential therapeutic target. Herein, we evaluated an anti-seizure and memory ameliorating potential of an anti-HMGB1 monoclonal antibody (mAb) (1, 2.5 and 5 mg/kg, I.P.) in a second hit Pentylenetetrazol (PTZ) (80 mg/kg, I.P.) induced seizure model earlier stimulated with Pilocarpine (400 mg/kg, I.P.) in adult zebrafish. Pre-treatment with anti-HMGB1 mAb dose-dependently lowered the second hit PTZ-induced seizure but does not alter the disease progression. Moreover, anti-HMGB1 mAb also attenuated the second hit Pentylenetetrazol induced memory impairment in adult zebrafish as evidenced by an increased inflection ration at 3 and 24 h trail in T-maze test. Besides, decreased level of GABA and an upregulated Glutamate level was observed in the second hit PTZ induced group, which was modulated by pre-treatment with anti-HMGB1 mAb. Inflammatory responses occurred during the progression of seizures as evidenced by upregulated mRNA expression of HMGB1, TLR4, NF-κB, and TNF-α, in a second hit PTZ group, which was in-turn downregulated upon pre-treatment with anti-HMGB1 mAb reflecting its anti-inflammatory potential. Anti-HMGB1 mAb modulates second hit PTZ induced changes in mRNA expression of CREB-1 and NPY. Our findings indicates anti-HMGB1 mAb attenuates second hit PTZ-induced seizures, ameliorates related memory impairment, and downregulates the seizure induced upregulation of inflammatory markers to possibly protect the zebrafish from the incidence of further seizures through via modulation of neuroinflammatory pathway.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,Liquid Chromatography-Mass Spectrometry Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
31
|
Enlightening the neuroprotective effect of quercetin in epilepsy: From mechanism to therapeutic opportunities. Epilepsy Behav 2021; 115:107701. [PMID: 33412369 DOI: 10.1016/j.yebeh.2020.107701] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
Epilepsy is a devastating neurological disorder characterized by the repeated occurrence of epileptic seizures. Epilepsy stands as a global health concern affecting around 70 million people worldwide. The mainstream antiepileptic drugs (AEDs) only exert symptomatic relief and drug-resistant epilepsy occurs in up to 33 percent of patients. Hence, the investigation of novel therapeutic strategies against epileptic seizures that could exert disease modifying effects is of paramount importance. In this context, compounds of natural origin with potential antiepileptic properties have recently gained increasing attention. Quercetin is a plant-derived flavonoid with several pharmacological activities. Emerging evidence has demonstrated the antiepileptic potential of quercetin as well. Herein, based on the available evidence, we discuss the neuroprotective effects of quercetin against epileptic seizures and further analyze the plausible underlying molecular mechanisms. Our review suggests that quercetin might be a potential therapeutic candidate against epilepsy that deserves further investigation, and paves the way for the development of plant-derived antiepileptic treatment approaches.
Collapse
|
32
|
Jin M, Ji X, Stoika R, Liu K, Wang L, Song Y. Synthesis of a novel fluorescent berberine derivative convenient for its subcellular localization study. Bioorg Chem 2020; 101:104021. [DOI: 10.1016/j.bioorg.2020.104021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/21/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022]
|
33
|
Jin M, Gao D, Wang R, Sik A, Liu K. Possible involvement of TGF‑β‑SMAD‑mediated epithelial‑mesenchymal transition in pro‑metastatic property of PAX6. Oncol Rep 2020; 44:555-564. [PMID: 32627030 PMCID: PMC7336511 DOI: 10.3892/or.2020.7644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/12/2020] [Indexed: 01/15/2023] Open
Abstract
Paired box 6 (PAX6) is a transcription factor that has oncogenic features. In breast cancer, PAX6 facilitates tumor progression; however, the underlying mechanism is largely unknown. The majority of breast cancer-related mortalities are associated with metastasis of cancer cells. Therefore, the present study aimed to investigate the role of PAX6 in breast tumor metastasis. PAX6 was stably overexpressed in breast cancer cells to perform tumor migration and metastasis assays in vitro and in vivo. In addition, the expression of PAX6 and transforming growth factor β (TGF-β)-SMAD signaling associated proteins on human breast cancer tissue array, as well as key factors involved in epithelial-mesenchymal transition (EMT) were assayed to explore the mechanism underlying metastasis of breast cancer cells. The expression levels of PAX6 were demonstrated to be increased in human breast cancer tissues and associated with poor clinical outcomes. Overexpression of PAX6 markedly promoted metastasis. Further investigation revealed that PAX6 overexpression increased TGF-β-SMAD signaling pathway and induced EMT. These results suggested that highly expressed PAX6 led to EMT through TGF-β-SMAD signaling pathway, thereby promoting cell metastasis and ultimately affecting survival in patients with breast cancer. Taken together, findings indicated that PAX6 may serve as a therapeutic target for the clinical treatment of breast cancer and the underlying mechanism could be used to overcome metastasis of cancer cells.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, P.R. China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, P.R. China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, P.R. China
| | - Attila Sik
- Institute of Physiology, Medical School, University of Pécs, H‑7624 Pécs, Hungary
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, P.R. China
| |
Collapse
|
34
|
Gawel K, Kukula-Koch W, Nieoczym D, Stepnik K, van der Ent W, Banono NS, Tarabasz D, Turski WA, Esguerra CV. The Influence of Palmatine Isolated from Berberis sibirica Radix on Pentylenetetrazole-Induced Seizures in Zebrafish. Cells 2020; 9:cells9051233. [PMID: 32429356 PMCID: PMC7290958 DOI: 10.3390/cells9051233] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Palmatine (PALM) and berberine (BERB) are widely identified isoquinoline alkaloids among the representatives of the Berberidaceae botanical family. The antiseizure activity of BERB was shown previously in experimental epilepsy models. We assessed the effect of PALM in a pentylenetetrazole (PTZ)-induced seizure assay in zebrafish, with BERB as an active reference compound. Both alkaloids were isolated from the methanolic root extract of Berberis sibirica by counter-current chromatography, and their ability to cross the blood–brain barrier was determined via quantitative structure–activity relationship assay. PALM exerted antiseizure activity, as confirmed by electroencephalographic analysis, and decreased c-fos and bdnf levels in PTZ-treated larvae. In a behavioral assay, PALM dose-dependently decreased PTZ-induced hyperlocomotion. The combination of PALM and BERB in ED16 doses revealed hyperadditive activity towards PTZ-induced hyperlocomotion. Notably, we have indicated that both alkaloids may exert their anticonvulsant activity through different mechanisms of action. Additionally, the combination of both alkaloids in a 1:2.17 ratio (PALM: BERB) mimicked the activity of the pure extract, which indicates that these two active compounds are responsible for its anticonvulsive activity. In conclusion, our study reveals for the first time the anticonvulsant activity of PALM and suggests the combination of PALM and BERB may have higher therapeutic value than separate usage of these compounds.
Collapse
Affiliation(s)
- Kinga Gawel
- Chemical Neuroscience Group, Faculty of Medicine, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (W.v.d.E.); (N.S.B.); (C.V.E.)
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090 Lublin, Poland;
- Correspondence: ; Tel.: +48-81448-6454
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy, Medical University of Lublin, 1, Chodzki Str. 1, 20-093 Lublin, Poland; (W.K.-K.); (D.T.)
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka Str. 19, 20-033 Lublin, Poland;
| | - Katarzyna Stepnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3/243, 20-031 Lublin, Poland;
| | - Wietske van der Ent
- Chemical Neuroscience Group, Faculty of Medicine, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (W.v.d.E.); (N.S.B.); (C.V.E.)
| | - Nancy Saana Banono
- Chemical Neuroscience Group, Faculty of Medicine, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (W.v.d.E.); (N.S.B.); (C.V.E.)
| | - Dominik Tarabasz
- Chair and Department of Pharmacognosy, Medical University of Lublin, 1, Chodzki Str. 1, 20-093 Lublin, Poland; (W.K.-K.); (D.T.)
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090 Lublin, Poland;
| | - Camila V. Esguerra
- Chemical Neuroscience Group, Faculty of Medicine, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (W.v.d.E.); (N.S.B.); (C.V.E.)
| |
Collapse
|
35
|
Wang Y, Liu Y, Du X, Ma H, Yao J. The Anti-Cancer Mechanisms of Berberine: A Review. Cancer Manag Res 2020; 12:695-702. [PMID: 32099466 PMCID: PMC6996556 DOI: 10.2147/cmar.s242329] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Berberine (BBR) has been extensively studied in vivo and vitro experiments. BBR inhibits cell proliferation by regulating cell cycle and cell autophagy, and promoting cell apoptosis. BBR also inhibits cell invasion and metastasis by suppressing EMT and down-regulating the expression of metastasis-related proteins and signaling pathways. In addition, BBR inhibits cell proliferation by interacting with microRNAs and suppressing telomerase activity. BBR exerts its anti-inflammation and antioxidant properties, and also regulates tumor microenvironment. This review emphasized that BBR as a potential anti-inflammation and antioxidant agent, also as an effective immunomodulator, is expected to be widely used in clinic for cancer therapy.
Collapse
Affiliation(s)
- Ye Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Yanfang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Xinyang Du
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Jing Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
36
|
Wang L, Yang X, Li X, Stoika R, Wang X, Lin H, Ma Y, Wang R, Liu K. Synthesis of hydrophobically modified berberine derivatives with high anticancer activity through modulation of the MAPK pathway. NEW J CHEM 2020. [DOI: 10.1039/d0nj01645d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Linoleic acid-modified berberine derivative induces apoptosis of A549 cells and affects the expression of proteins associated with the MAPK pathway.
Collapse
Affiliation(s)
- Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Xueliang Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis
- Institute of Cell Biology
- National Academy of Sciences of Ukraine
- Lviv
- Ukraine
| | - Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Houwen Lin
- Research Center for Marine Drugs
- State Key Laboratory of Oncogenes and Related Genes
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Yukui Ma
- Shandong Provincial Key Laboratory of Chemical Drugs
- Shandong Academy of Pharmaceutical Sciences
- 250101 Jinan
- China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| |
Collapse
|