1
|
Zhang S, Crossley CA, Yuan Q. Neuronal Vulnerability of the Entorhinal Cortex to Tau Pathology in Alzheimer's Disease. Br J Biomed Sci 2024; 81:13169. [PMID: 39435008 PMCID: PMC11491395 DOI: 10.3389/bjbs.2024.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024]
Abstract
This review delves into the entorhinal cortex (EC) as a central player in the pathogenesis of Alzheimer's Disease (AD), emphasizing its role in the accumulation and propagation of tau pathology. It elucidates the multifaceted functions of the EC, encompassing memory formation, spatial navigation, and olfactory processing, while exploring how disruptions in these processes contribute to cognitive decline in AD. The review discusses the intricate interplay between tau pathology and EC vulnerability, highlighting how alterations in neuronal firing patterns and synaptic function within the EC exacerbate cognitive impairments. Furthermore, it elucidates how specific neuronal subtypes within the EC exhibit differential susceptibility to tau-induced damage, contributing to disease progression. Early detection methods, such as imaging techniques and assessments of EC blood flow, are examined as potential tools for identifying tau pathology in the preclinical stages of AD. These approaches offer promise for improving diagnostic accuracy and enabling timely intervention. Therapeutic strategies targeting tau pathology within the EC are explored, including the clearance of pathological tau aggregates and the inhibition of tau aggregation processes. By understanding the molecular and cellular mechanisms underlying EC vulnerability, researchers can develop more targeted and effective interventions to slow disease progression. The review underscores the importance of reliable biomarkers to assess disease progression and therapeutic efficacy in clinical trials targeting the EC. Ultimately, it aims to contribute to the development of more effective management strategies for AD, emphasizing the translation of research findings into clinical practice to address the growing societal burden of the disease.
Collapse
Affiliation(s)
| | - Chelsea Ann Crossley
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | |
Collapse
|
2
|
Xing J, Wang Y, Peng A, Li J, Niu X, Zhang K. The role of actin cytoskeleton CFL1 and ADF/cofilin superfamily in inflammatory response. Front Mol Biosci 2024; 11:1408287. [PMID: 39114368 PMCID: PMC11303188 DOI: 10.3389/fmolb.2024.1408287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Actin remodeling proteins are important in immune diseases and regulate cell cytoskeletal responses. These responses play a pivotal role in maintaining the delicate balance of biological events, protecting against acute or chronic inflammation in a range of diseases. Cofilin (CFL) and actin depolymerization factor (ADF) are potent actin-binding proteins that cut and depolymerize actin filaments to generate actin cytoskeleton dynamics. Although the molecular mechanism by which actin induces actin cytoskeletal reconstitution has been studied for decades, the regulation of actin in the inflammatory process has only recently become apparent. In this paper, the functions of the actin cytoskeleton and ADF/cofilin superfamily members are briefly introduced, and then focus on the role of CFL1 in inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | | | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan Central Hospital, Dong San Dao Xiang, Taiyuan, China
| |
Collapse
|
3
|
Lee B, Yu MS, Song JG, Lee HM, Kim HW, Na D. Corydalis ternata Nakai Alleviates Cognitive Decline in Alzheimer's Disease by Reducing β-Amyloid and Neuroinflammation. Rejuvenation Res 2024; 27:87-101. [PMID: 38545769 DOI: 10.1089/rej.2023.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Recently, natural herbs have gained increasing attention owing to their comparatively low toxicity levels and the abundance of historical medical documentation regarding their use. Nevertheless, owing to a lack of knowledge regarding these herbs and their compounds, attempts to find those that could be beneficial for treating diseases have often been ad hoc; thus, there is now a growing demand for an in silico method to identify beneficial herbs. In this study, we present a computational approach for identifying natural herbs specifically effective in treating cognitive decline in Alzheimer's disease (AD) sufferers, which analyzes the similarities between herbal compounds and known drugs targeting AD-related proteins. Our in silico method suggests that Corydalis ternata can improve cognitive decline in AD sufferers. Behavioral tests with an AD mouse model for the confirmation of the in silico prediction reveals that C. ternata significantly alleviated the cognitive decline (memory and motor functions) caused by neurodegeneration. Further pathology analyses reveal that C. ternata decreases the level of Aβ plaques, reduces neuroinflammation, and promotes autophagy flux, and thus C. ternata can be clinically effective for preventing mild cognitive impairment during the early stages of AD. These findings highlight the potential utility of our in silico method and the potential clinical application of the identified natural herb in treating and preventing AD.
Collapse
Affiliation(s)
- Bomi Lee
- Department of Bio-Integrated Science and Technology, College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Myeong-Sang Yu
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jae Gwang Song
- Department of Bio-Integrated Science and Technology, College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Hyang-Mi Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Hyung Wook Kim
- Department of Bio-Integrated Science and Technology, College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Xiang X, Xia S, Li S, Zeng Y, Wang L, Zhou Y. Study on the role and mechanism of Tan IIA in Alzheimer's disease based on CREB-BDNF-TrkB pathway. Neurosci Lett 2024; 830:137769. [PMID: 38616003 DOI: 10.1016/j.neulet.2024.137769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
The occurrence and development of Alzheimer's disease (AD) is closely related to neuronal loss, inflammatory response, cholinergic imbalance, and Tau protein hyperphosphorylation. Previous studies have confirmed that Streptozotocin (STZ) can be used to establish a rat model of AD by injecting it into the rat brain via the lateral ventricle. Our previous research showed that Danshentone IIA (Tan IIA) can improve cognitive dysfunction in rats caused by CC chemokine ligand 2, and network pharmacology results show that Tan IIA is very likely to improve AD symptoms through the cyclic adenosine monophosphate response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), and tyrosine kinase receptor protein (TrkB) pathway. The results of the water maze experiment showed that after Tan IIA treatment, the escape latency of AD rats was shortened and the number of platform crossings increased; in the new object recognition experiment, the discrimination index of AD rats significantly increased after treatment; Nissl staining and Tunel staining results showed that Tan IIA increased the number of surviving neurons in the hippocampus of cognitively impaired rats and reduced neuronal apoptosis; Bielschowsky silver staining results showed that Tan IIA reduced neurofibrillary tangles (NFTs) in the AD rats; Tan IIA can reduce the inflammatory response and oxidative stress reaction in the hippocampus of AD rats, and at the same time reduce the activity of acetylcholinesterase. Tan IIA can significantly increase the expression of CREB, BDNF, TrkB in the hippocampal tissue of STZ-injured rats (P < 0.05). These data suggest that Tan IIA may upregulate the expression of the CREB-BDNF-TrkB signaling pathway in the hippocampus of brain tissue, produce anti-neuroinflammatory, antioxidant stress, inhibit neuronal apoptosis effects, and improve cholinergic neurotransmitter disorder induced by STZ, reduce the neuronal damage and learning and memory impairment caused by STZ in rats, and improve the cognitive function of rats.
Collapse
Affiliation(s)
- Xiyong Xiang
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Siyu Xia
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Shan Li
- College of Nursing, Guangxi Medical University, Nanning 530021, China
| | - Yirong Zeng
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Lixuan Wang
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Yan Zhou
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
5
|
Zhu T, Li Y, Zhu L, Xu J, Feng Z, Chen H, Shi S, Liu C, Ou Q, Gao F, Zhang J, Jin C, Xu J, Li J, Zhang J, Bi Y, Xu GT, Wang J, Tian H, Lu L. GMFB/AKT/TGF-β3 in Müller cells mediated early retinal degeneration in a streptozotocin-induced rat diabetes model. Glia 2024; 72:504-528. [PMID: 37904673 DOI: 10.1002/glia.24486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/14/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023]
Abstract
Retinal degeneration, characterized by Müller cell gliosis and photoreceptor apoptosis, is considered an early event in diabetic retinopathy (DR). Our previous study proposed that GMFB may mediate diabetic retinal degeneration. This study identified GMFB as a sensitive and functional gliosis marker for DR. Compared to the wild type (WT) group, Gmfb knockout (KO) significantly improved visual function, attenuated gliosis, reduced the apoptosis of neurons, and decreased the mRNA levels of tumor necrosis factor α (Tnf-α) and interleukin-1β (Il-1β) in diabetic retinas. Tgf-β3 was enriched by hub genes using RNA sequencing in primary WT and KO Müller cells. Gmfb KO significantly upregulated the transforming growth factor (TGF)-β3 protein level via the AKT pathway. The protective effect of TGF-β3 in the vitreous resulted in significantly improved visual function and decreased the number of apoptotic cells in the diabetic retina. The protection of Gmfb KO in primary Müller cells against high glucose (HG)-induced photoreceptor apoptosis was partially counteracted by TGF-β3 antibody and administration of TGFBR1/2 inhibitors. Nuclear receptor subfamily 3 group C member 1 (NR3C1) binds to the promoter region of Gmfb and regulates Gmfb mRNA at the transcriptional level. NR3C1 was increased in the retinas of early diabetic rats but decreased in the retinas of late diabetic rats. N'-[(1E)-(3-Methoxyphenyl)Methylene]-3-Methyl-1H-Pyrazole-5-Carbohydrazide (DS-5) was identified as an inhibitor of GMFB, having a protective role in DR. We demonstrated that GMFB/AKT/TGF-β3 mediated early diabetic retinal degeneration in diabetic rats. This study provides a novel therapeutic strategy for treating retinal degeneration in patients with DR.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Yingao Li
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Lilin Zhu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jinyuan Xu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Zijun Feng
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Hao Chen
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Si Shi
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Caiying Liu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Furong Gao
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jingying Xu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jiao Li
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology of Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yanlong Bi
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Human Genetics, Tongji University School of Medicine, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Thangavel R, Kaur H, Dubova I, Selvakumar GP, Ahmed ME, Raikwar SP, Govindarajan R, Kempuraj D. Parkinson's Disease Dementia Patients: Expression of Glia Maturation Factor in the Brain. Int J Mol Sci 2024; 25:1182. [PMID: 38256254 PMCID: PMC11154259 DOI: 10.3390/ijms25021182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disease characterized by the presence of dopaminergic neuronal loss and motor disorders. PD dementia (PDD) is a cognitive disorder that affects many PD patients. We have previously demonstrated the proinflammatory role of the glia maturation factor (GMF) in neuroinflammation and neurodegeneration in AD, PD, traumatic brain injury (TBI), and experimental autoimmune encephalomyelitis (EAE) in human brains and animal models. The purpose of this study was to investigate the expression of the GMF in the human PDD brain. We analyzed the expression pattern of the GMF protein in conjunction with amyloid plaques (APs) and neurofibrillary tangles (NFTs) in the substantia nigra (SN) and striatum of PDD brains using immunostaining. We detected a large number of GMF-positive glial fibrillary acidic protein (GFAP) reactive astrocytes, especially abundant in areas with degenerating dopaminergic neurons within the SN and striatum in PDD. Additionally, we observed excess levels of GMF in glial cells in the vicinity of APs, and NFTs in the SN and striatum of PDD and non-PDD patients. We found that the majority of GMF-positive immunoreactive glial cells were co-localized with GFAP-reactive astrocytes. Our findings suggest that the GMF may be involved in the pathogenesis of PDD.
Collapse
|
7
|
Raikwar SP, Thangavel R, Ahmed ME, Selvakumar GP, Kempuraj D, Wu K, Khan O, Bazley K, Bussinger B, Kukulka K, Zaheer S, Iyer SS, Govindarajan R, Burton C, James D, Zaheer A. Real-Time Noninvasive Bioluminescence, Ultrasound and Photoacoustic Imaging in NFκB-RE-Luc Transgenic Mice Reveal Glia Maturation Factor-Mediated Immediate and Sustained Spatio-Temporal Activation of NFκB Signaling Post-Traumatic Brain Injury in a Gender-Specific Manner. Cell Mol Neurobiol 2021; 41:1687-1706. [PMID: 32785863 PMCID: PMC8188847 DOI: 10.1007/s10571-020-00937-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
Neurotrauma especially traumatic brain injury (TBI) is the leading cause of death and disability worldwide. To improve upon the early diagnosis and develop precision-targeted therapies for TBI, it is critical to understand the underlying molecular mechanisms and signaling pathways. The transcription factor, nuclear factor kappa B (NFκB), which is ubiquitously expressed, plays a crucial role in the normal cell survival, proliferation, differentiation, function, as well as in disease states like neuroinflammation and neurodegeneration. Here, we hypothesized that real-time noninvasive bioluminescence molecular imaging allows rapid and precise monitoring of TBI-induced immediate and rapid spatio-temporal activation of NFκB signaling pathway in response to Glia maturation factor (GMF) upregulation which in turn leads to neuroinflammation and neurodegeneration post-TBI. To test and validate our hypothesis and to gain novel mechanistic insights, we subjected NFκB-RE-Luc transgenic male and female mice to TBI and performed real-time noninvasive bioluminescence imaging (BLI) as well as photoacoustic and ultrasound imaging (PAI). Our BLI data revealed that TBI leads to an immediate and sustained activation of NFκB signaling. Further, our BLI data suggest that especially in male NFκB-RE-Luc transgenic mice subjected to TBI, in addition to brain, there is widespread activation of NFκB signaling in multiple organs. However, in the case of the female NFκB-RE-Luc transgenic mice, TBI induces a very specific and localized activation of NFκB signaling in the brain. Further, our microRNA data suggest that TBI induces significant upregulation of mir-9-5p, mir-21a-5p, mir-34a-5p, mir-16-3p, as well as mir-155-5p within 24 h and these microRNAs can be successfully used as TBI-specific biomarkers. To the best of our knowledge, this is one of the first and unique study of its kind to report immediate and sustained activation of NFκB signaling post-TBI in a gender-specific manner by utilizing real-time non-invasive BLI and PAI in NFκB-RE-Luc transgenic mice. Our study will prove immensely beneficial to gain novel mechanistic insights underlying TBI, unravel novel therapeutic targets, as well as enable us to monitor in real-time the response to innovative TBI-specific precision-targeted gene and stem cell-based precision medicine.
Collapse
Affiliation(s)
- Sudhanshu P Raikwar
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA.
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA.
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.
| | - Ramasamy Thangavel
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Mohammad Ejaz Ahmed
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Kristopher Wu
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Osaid Khan
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Kieran Bazley
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Bret Bussinger
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Klaudia Kukulka
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Smita Zaheer
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Shankar S Iyer
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Raghav Govindarajan
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
| | | | | | - Asgar Zaheer
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA.
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA.
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.
| |
Collapse
|