1
|
Vallaster B, Engelsing F, Grohganz H. Influence of water and trehalose on α- and β-relaxation of freeze-dried lysozyme formulations. Eur J Pharm Biopharm 2024; 194:1-8. [PMID: 38029940 DOI: 10.1016/j.ejpb.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Molecular mobility in form of alpha and beta relaxations is considered crucial for characterization of amorphous lyophilizates and reflected in the transition temperatures Tgα and Tgβ. Based on an overview of applied methods to study beta relaxations, Dynamic Mechanical analysis was used to measure Tgα and Tgβ in amorphous freeze-dried samples. Lysozyme and trehalose as well as their mixtures in varying ratios were investigated. Three different residual moisture levels, ranging from roughly 0.5-7 % (w/w), were prepared via equilibration of the freeze-dried samples. Known plasticising effects of water on Tgα were confirmed, also via differential scanning calorimetry. In addition and contrary to expectations, an influence of water on the Tgβ also was observed. On the other hand, an increasing amount of trehalose lowered Tgα but increased Tgβ showing that Tgα and Tgβ are not paired. The findings were interpreted with regard to their underlying molecular mechanisms and a correlation with the known influences of water and trehalose on stability. The results provide encouraging hints for future stability studies of freeze-dried protein formulations, which are urgently needed, not least for reasons of sustainability.
Collapse
Affiliation(s)
- Bernadette Vallaster
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark
| | - Florian Engelsing
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark
| | - Holger Grohganz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark.
| |
Collapse
|
2
|
Vijayakumar B, Takatsuka M, Sasaki K, Kita R, Shinyashiki N, Yagihara S, Rathnasabapathy S. Dielectric relaxation of ice in a partially crystallized poly( N-isopropylacrylamide)microgel suspension compared to other partially crystalized polymer-water mixtures. Phys Chem Chem Phys 2023; 25:22223-22231. [PMID: 37566434 DOI: 10.1039/d3cp02116e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A broadband dielectric spectroscopy study was conducted on a partially crystallized 10 wt% poly(N-isopropylacrylamide) [PNIPAM] microgel aqueous suspension to investigate the dielectric relaxation of ice in microgel suspensions. The measurements covered a frequency range of 10 mHz to 10 MHz and at temperatures ranging from 123 K to 273 K. Two distinct relaxation processes were observed at specific frequencies below the melting temperature. One is associated with the combination of the local chain motion of PNIPAM and interfacial polarization in the uncrystallized phase, while another is associated with ice. To understand the temperature-dependent behaviour of the ice relaxation process, the relaxation time of ice was compared with those observed in other frozen polymer water mixtures, including gelatin, poly-vinylpyrrolidone (PVP), and bovine serum albumin (BSA). For concentrations ≥ 10 wt%, the temperature dependence of the relaxation time of ice was found to be independent. Therefore, the study primarily focused on the 10 wt% data for easier comprehension of the ice relaxation process. It was found that the microgel and globular protein BSA had no significant effect on ice crystallization, while gelatin slowed down the crystallization process, and PVP accelerated it. To discuss the mechanism of the dielectric relaxation of ice, the trap-controlled proton transport model developed by Khamzin et al. [Chem. Phys., 2021, 541, 111040.] was employed. The model was used to discuss the dynamic heterogeneity of ice observed in this investigation, distinguishing it from the spatial heterogeneity of ice commonly discussed.
Collapse
Affiliation(s)
- Balachandar Vijayakumar
- Department of Physics, Sathyabama Institute of Science and Technology, Chennai-600119, India. drrskumar@
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai-600119, India
| | - Masanobu Takatsuka
- Graduate School of Science and Technology, Tokai University, Kanagawa 259-1292, Japan
| | - Kaito Sasaki
- Department of Physics, Tokai University, Kanagawa 259-1292, Japan.
- Micro/Nano Technology Centre, Tokai University, Kanagawa 259-1292, Japan
| | - Rio Kita
- Department of Physics, Tokai University, Kanagawa 259-1292, Japan.
- Micro/Nano Technology Centre, Tokai University, Kanagawa 259-1292, Japan
| | - Naoki Shinyashiki
- Department of Physics, Tokai University, Kanagawa 259-1292, Japan.
- Micro/Nano Technology Centre, Tokai University, Kanagawa 259-1292, Japan
| | - Shin Yagihara
- Department of Physics, Tokai University, Kanagawa 259-1292, Japan.
| | | |
Collapse
|
3
|
Nakagawa H, Yamamoto N. Incoherent Neutron Scattering and Terahertz Time-Domain Spectroscopy on Protein and Hydration Water. Life (Basel) 2023; 13:life13020318. [PMID: 36836676 PMCID: PMC9961865 DOI: 10.3390/life13020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Incoherent inelastic and quasi-elastic neutron scattering (INS) and terahertz time-domain spectroscopy (THz-TDS) are spectroscopy methods that directly detect molecular dynamics, with an overlap in the measured energy regions of each method. Due to the different characteristics of their probes (i.e., neutron and light), the information obtained and the sample conditions suitable for each method differ. In this review, we introduce the differences in the quantum beam properties of the two methods and their associated advantages and disadvantages in molecular spectroscopy. Neutrons are scattered via interaction with nuclei; one characteristic of neutron scattering is a large incoherent scattering cross-section of a hydrogen atom. INS records the auto-correlation functions of atomic positions. By using the difference in neutron scattering cross-sections of isotopes in multi-component systems, some molecules can be selectively observed. In contrast, THz-TDS observes the cross-correlation function of dipole moments. In water-containing biomolecular samples, the absorption of water molecules is particularly large. While INS requires large-scale experimental facilities, such as accelerators and nuclear reactors, THz-TDS can be performed at the laboratory level. In the analysis of water molecule dynamics, INS is primarily sensitive to translational diffusion motion, while THz-TDS observes rotational motion in the spectrum. The two techniques are complementary in many respects, and a combination of the two is very useful in analyzing the dynamics of biomolecules and hydration water.
Collapse
Affiliation(s)
- Hiroshi Nakagawa
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai-mura 319-1195, Ibaraki, Japan
- J-PARC Center, Japan Atomic Energy Agency, Tokai-mura 319-1195, Ibaraki, Japan
- Correspondence: (H.N.); (N.Y.)
| | - Naoki Yamamoto
- Division of Biophysics, Department of Physiology, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan
- Correspondence: (H.N.); (N.Y.)
| |
Collapse
|
4
|
Ojeda-Galván HJ, Hernández-Arteaga AC, Rodríguez-Aranda MC, Toro-Vazquez JF, Cruz-González N, Ortíz-Chávez S, Comas-García M, Rodríguez AG, Navarro-Contreras HR. Application of Raman spectroscopy for the determination of proteins denaturation and amino acids decomposition temperature. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121941. [PMID: 36208579 DOI: 10.1016/j.saa.2022.121941] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/25/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Raman spectroscopy was employed to study the thermal denaturation of three different proteins, bovine serum albumin (BSA), lysozyme, ovalbumin; and the decomposition temperature of three amino acids, l-glutamine, l-cysteine, and l-alanine, all of them as lyophilized powders. All the Raman bands observed in the spectra obtained were recorded and analyzed at preset heating temperatures. The results obtained for either protein denaturation temperature TD and amino acid decomposition temperatures TM-dc, were compared with those measured by differential scanning calorimetry (DSC). The DSC and Raman results were additionally corroborated with a thermogravimetric analysis (TGA) for the case of proteins. This exercise indicated almost complete coincidence in the determination of these transition temperatures between the three techniques, evidencing the applicability of Raman spectroscopy in the study of denaturation and decomposition temperatures of proteins and amino acids.
Collapse
Affiliation(s)
- H J Ojeda-Galván
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210 San Luis Potosí, SLP, Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210 San Luis Potosí, SLP, Mexico
| | - A C Hernández-Arteaga
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210 San Luis Potosí, SLP, Mexico.
| | - M C Rodríguez-Aranda
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210 San Luis Potosí, SLP, Mexico.
| | - J F Toro-Vazquez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí 78000, Mexico
| | - N Cruz-González
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210 San Luis Potosí, SLP, Mexico
| | - S Ortíz-Chávez
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210 San Luis Potosí, SLP, Mexico
| | - M Comas-García
- Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210 San Luis Potosí, SLP, Mexico; Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí 78000, Mexico
| | - A G Rodríguez
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210 San Luis Potosí, SLP, Mexico
| | - H R Navarro-Contreras
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210 San Luis Potosí, SLP, Mexico
| |
Collapse
|
5
|
Beilinson Y, Rassabina A, Lunev I, Faizullin D, Greenbaum A, Salnikov V, Zuev Y, Minibayeva F, Feldman Y. The dielectric response of hydrated water as a structural signature of nanoconfined lichen melanins. Phys Chem Chem Phys 2022; 24:22624-22633. [PMID: 36102934 DOI: 10.1039/d2cp01383e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lichens are unique symbiotic organisms from a mutually beneficial alliance of fungi and algae/cyanobacteria that successfully survive extreme temperatures and drought conditions. Most probably such extraordinary vitality of lichens is underlain by melanins, one of the main structural and chemical lichen components, and their mutual relationship with residual water. In this paper, we propose mechanisms, which allow lichens to store up the extra water in their structure. Melanins that are constituents of the cortical lichen layer and presumably contribute to unique water-lichen interactions are chosen for physical experiments in a wide temperature domain. Two melanin pigments extracted from different lichens are studied here - eumelanin from Lobaria pulmonaria and allomelanin from Cetraria islandica. To investigate the inner melanin structure and water-melanin interactions, FTIR and BDS techniques are applied. The BDS technique was used in a wide temperature region of 123-293 K for melanins with various hydration levels. The relaxation processes related to the confinement of supercooled water - in melanins are observed and discussed in details. At medium and high hydration levels, the relaxation process in two melanins of different chemical compositions and supramolecular structures exhibits a well-known crossover that was already observed in many types of confinements. The analysis of FTIR and BDS results helps to clarify the lichen-water interaction processes.
Collapse
Affiliation(s)
- Yael Beilinson
- Department of Applied Physics, Soft Condensed Matter Laboratory, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel.
| | - Anna Rassabina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str. 2/31, Kazan, 420111, Russian Federation.
| | - Ivan Lunev
- Kazan Federal University, Institute of Physics, Kremlevskaya str.18, Kazan, 420008, Russian Federation
| | - Dzhigangir Faizullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str. 2/31, Kazan, 420111, Russian Federation.
| | - Anna Greenbaum
- Department of Applied Physics, Soft Condensed Matter Laboratory, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel. .,Racah Institute of Physics, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Vadim Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str. 2/31, Kazan, 420111, Russian Federation.
| | - Yuriy Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str. 2/31, Kazan, 420111, Russian Federation.
| | - Farida Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str. 2/31, Kazan, 420111, Russian Federation.
| | - Yuri Feldman
- Department of Applied Physics, Soft Condensed Matter Laboratory, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel.
| |
Collapse
|
6
|
Tsukahara T, Sasaki K, Kita R, Shinyashiki N. Dielectric relaxations of ice and uncrystallized water in partially crystallized bovine serum albumin-water mixtures. Phys Chem Chem Phys 2022; 24:5803-5812. [PMID: 35213680 DOI: 10.1039/d1cp05679d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To investigate the dielectric relaxations of ice in low-concentration protein-water mixtures, broadband dielectric spectroscopy measurements were performed on partially crystallized bovine serum albumin (BSA)-water mixtures with BSA concentrations of 1-10 wt% at temperatures in the range of 123-298 K. The temperature dependence of the relaxation time of ice observed in all these mixtures changes twice at TC1 (∼240 K) and TC2 (200-160 K) (TC1 > TC2), i.e., at which the apparent activation energy, Ea, changes. Below 200 K, the relaxation of ice separates as 3-4 relaxations with different TC2 and Ea values. The presence of the multiple ice relaxations is the same as that observed for the gelatin-water mixtures (T. Yasuda, K. Sasaki, R. Kita, N. Shinyashiki and S. Yagihara, J. Phys. Chem. B, 2017, 121, 2896), but the concentration dependences of TC1 and TC2 are different. The relaxation interpreted to be due to uncrystallized water in 20 wt% and 40 wt% BSA-water mixtures reported (N. Shinyashiki, W. Yamamoto, A. Yokoyama, T. Yoshinari, S. Yagihara, R. Kita, K. L. Ngai and S. Capaccioli, J. Phys. Chem. B, 2009, 113, 14448) was re-examined and concluded to be due to one of the multiple relaxations of ice.
Collapse
Affiliation(s)
- Tatsuya Tsukahara
- Department of Physics, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, Japan.
| | - Kaito Sasaki
- Department of Physics, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, Japan. .,Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, Japan
| | - Rio Kita
- Department of Physics, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, Japan. .,Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, Japan
| | - Naoki Shinyashiki
- Department of Physics, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, Japan. .,Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, Japan
| |
Collapse
|
7
|
Yamamoto N, Nakanishi M, Rajan R, Nakagawa H. Protein hydration and its freezing phenomena: Toward the application for cell freezing and frozen food storage. Biophys Physicobiol 2022; 18:284-288. [PMID: 35004102 PMCID: PMC8677416 DOI: 10.2142/biophysico.bppb-v18.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Naoki Yamamoto
- School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Masahiro Nakanishi
- Department of Engineering, Fukuoka Institute of Technology, Fukuoka, Fukuoka 811-0295, Japan
| | - Robin Rajan
- Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | | |
Collapse
|
8
|
Latypova L, Puzenko A, Poluektov Y, Anashkina A, Petrushanko I, Bogdanova A, Feldman Y. Hydration of methemoglobin studied by in silico modeling and dielectric spectroscopy. J Chem Phys 2021; 155:015101. [PMID: 34241395 DOI: 10.1063/5.0054697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The hemoglobin concentration of 35 g/dl of human red blood cells is close to the solubility threshold. Using microwave dielectric spectroscopy, we have assessed the amount of water associated with hydration shells of methemoglobin as a function of its concentration in the presence or absence of ions. We estimated water-hemoglobin interactions to interpret the obtained data. Within the concentration range of 5-10 g/dl of methemoglobin, ions play an important role in defining the free-to-bound water ratio competing with hemoglobin to recruit water molecules for the hydration shell. At higher concentrations, hemoglobin is a major contributor to the recruitment of water to its hydration shell. Furthermore, the amount of bound water does not change as the hemoglobin concentration is increased from 15 to 30 g/dl, remaining at the level of ∼20% of the total intracellular water pool. The theoretical evaluation of the ratio of free and bound water for the hemoglobin concentration in the absence of ions corresponds with the experimental results and shows that the methemoglobin molecule binds about 1400 water molecules. These observations suggest that within the concentration range close to the physiological one, hemoglobin molecules are so close to each other that their hydration shells interact. In this case, the orientation of the hemoglobin molecules is most likely not stochastic, but rather supports partial neutralization of positive and negative charges at the protein surface. Furthermore, deformation of the red blood cell shape results in the rearrangement of these structures.
Collapse
Affiliation(s)
- Larisa Latypova
- Department of Applied Physics, The Hebrew University of Jerusalem, Givat Ram 91904, Israel
| | - Alexander Puzenko
- Department of Applied Physics, The Hebrew University of Jerusalem, Givat Ram 91904, Israel
| | - Yuri Poluektov
- Engelhart Institute of Molecular Biology, Russian Academy of Science, Vavilov St. 32, 119991 Moscow, Russia
| | - Anastasia Anashkina
- Engelhart Institute of Molecular Biology, Russian Academy of Science, Vavilov St. 32, 119991 Moscow, Russia
| | - Irina Petrushanko
- Engelhart Institute of Molecular Biology, Russian Academy of Science, Vavilov St. 32, 119991 Moscow, Russia
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
| | - Yuri Feldman
- Department of Applied Physics, The Hebrew University of Jerusalem, Givat Ram 91904, Israel
| |
Collapse
|
9
|
Sasaki K, Takatsuka M, Shinyashiki N, Ngai KL. Relating the dynamics of hydrated poly(vinyl pyrrolidone) to the dynamics of highly asymmetric mixtures and polymer blends. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Yamamoto N, Kofu M, Nakajima K, Nakagawa H, Shibayama N. Freezable and Unfreezable Hydration Water: Distinct Contributions to Protein Dynamics Revealed by Neutron Scattering. J Phys Chem Lett 2021; 12:2172-2176. [PMID: 33629864 DOI: 10.1021/acs.jpclett.0c03786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydration water plays a crucial role for activating the protein dynamics required for functional expression. Yet, the details are not understood about how hydration water couples with protein dynamics. A temperature hysteresis of the ice formation of hydration water is a key phenomenon to understand which type of hydration water, unfreezable or freezable hydration water, is crucial for the activation of protein dynamics. Using neutron scattering, we observed a temperature-hysteresis phenomenon in the diffraction peaks of the ice of freezable hydration water, whereas protein dynamics did not show any temperature hysteresis. These results show that the protein dynamics is not coupled with freezable hydration water dynamics, and unfreezable hydration water is essential for the activation of protein dynamics. Decoupling of the dynamics between unfreezable and freezable hydration water could be the cause of the distinct contributions of hydration water to protein dynamics.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Division of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Maiko Kofu
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Kenji Nakajima
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Hiroshi Nakagawa
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
- Materials Sciences Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Naoya Shibayama
- Division of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
11
|
Kämpf K, Demuth D, Zamponi M, Wuttke J, Vogel M. Quasielastic neutron scattering studies on couplings of protein and water dynamics in hydrated elastin. J Chem Phys 2020; 152:245101. [PMID: 32610976 DOI: 10.1063/5.0011107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Performing quasielastic neutron scattering measurements and analyzing both elastic and quasielasic contributions, we study protein and water dynamics of hydrated elastin. At low temperatures, hydration-independent methyl group rotation dominates the findings. It is characterized by a Gaussian distribution of activation energies centered at about Em = 0.17 eV. At ∼195 K, coupled protein-water motion sets in. The hydration water shows diffusive motion, which is described by a Gaussian distribution of activation energies with Em = 0.57 eV. This Arrhenius behavior of water diffusion is consistent with previous results for water reorientation, but at variance with a fragile-to-strong crossover at ∼225 K. The hydration-related elastin backbone motion is localized and can be attributed to the cage rattling motion. We speculate that its onset at ∼195 K is related to a secondary glass transition, which occurs when a β relaxation of the protein has a correlation time of τβ ∼ 100 s. Moreover, we show that its temperature-dependent amplitude has a crossover at the regular glass transition Tg = 320 K of hydrated elastin, where the α relaxation of the protein obeys τα ∼ 100 s. By contrast, we do not observe a protein dynamical transition when water dynamics enters the experimental time window at ∼240 K.
Collapse
Affiliation(s)
- Kerstin Kämpf
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany
| | - Dominik Demuth
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany
| | - Michaela Zamponi
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Lichtenbergstraße 1, 85747 Garching, Germany
| | - Joachim Wuttke
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Lichtenbergstraße 1, 85747 Garching, Germany
| | - Michael Vogel
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany
| |
Collapse
|
12
|
Fujii M, Sasaki K, Matsui Y, Inoue S, Kita R, Shinyashiki N, Yagihara S. Dynamics of Uncrystallized Water, Ice, and Hydrated Polymer in Partially Crystallized Poly(vinylpyrrolidone)-Water Mixtures. J Phys Chem B 2020; 124:1521-1530. [PMID: 32009404 DOI: 10.1021/acs.jpcb.9b11552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we investigated the cooperative molecular dynamics of poly(vinylpyrrolidone) (PVP), ice, and uncrystallized water (UCW) in partially crystallized PVP-water mixtures by means of broadband dielectric spectroscopy. Three relaxation processes, denoted I, II, and III, were observed at temperatures ranging from immediately below the crystallization temperature (Tc) to approximately 200 K. At temperatures of 173-193 K, processes I and II cannot be distinguished. Below 168 K, process II separates into two processes: process IV at higher frequencies and process V at lower frequencies. Process I contributes to process V. In partially crystallized mixtures, process I originates from UCW in an uncrystallized phase with PVP. Process II is attributed to ice in the mixture, with a relaxation time that is 2 orders of magnitude smaller than that of pure ice. The concentration dependence of the strength of process II and the relaxation time relative to that of ice in bovine serum albumin (BSA)-water and gelatin-water mixtures strongly support this conclusion. Observation of processes IV and V indicates the presence of multiple ice relaxation processes. Process III is attributed to the α process of PVP in the uncrystallized phase in 40 and 50 wt % PVP mixtures. For mixtures with 30 wt % PVP or less, process III is attributed not only to the α process of PVP but also to interfacial polarization.
Collapse
Affiliation(s)
- Mitsuki Fujii
- Department of Physics, School of Science , Tokai University , 4-1-1 Kitakaname , Hiratuka-shi , Kanagawa 259-1292 , Japan
| | - Kaito Sasaki
- Micro/Nano Technology Center , Tokai University , 4-1-1 Kitakaname , Hiratuka-shi , Kanagawa 259-1292 , Japan
| | - Yurika Matsui
- Department of Physics, School of Science , Tokai University , 4-1-1 Kitakaname , Hiratuka-shi , Kanagawa 259-1292 , Japan
| | - Shiori Inoue
- Department of Physics, School of Science , Tokai University , 4-1-1 Kitakaname , Hiratuka-shi , Kanagawa 259-1292 , Japan
| | - Rio Kita
- Department of Physics, School of Science , Tokai University , 4-1-1 Kitakaname , Hiratuka-shi , Kanagawa 259-1292 , Japan.,Micro/Nano Technology Center , Tokai University , 4-1-1 Kitakaname , Hiratuka-shi , Kanagawa 259-1292 , Japan
| | - Naoki Shinyashiki
- Department of Physics, School of Science , Tokai University , 4-1-1 Kitakaname , Hiratuka-shi , Kanagawa 259-1292 , Japan.,Micro/Nano Technology Center , Tokai University , 4-1-1 Kitakaname , Hiratuka-shi , Kanagawa 259-1292 , Japan
| | - Shin Yagihara
- Department of Physics, School of Science , Tokai University , 4-1-1 Kitakaname , Hiratuka-shi , Kanagawa 259-1292 , Japan
| |
Collapse
|
13
|
Ngai K, Hong L, Capaccioli S, Paciaroni A. Uncovering a novel transition in the dynamics of proteins in the dry state. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Sasaki K, Popov I, Feldman Y. Water in the hydrated protein powders: Dynamic and structure. J Chem Phys 2019; 150:204504. [DOI: 10.1063/1.5096881] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Kaito Sasaki
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, Japan
- Department of Applied Physics, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Ivan Popov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Yuri Feldman
- Department of Applied Physics, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| |
Collapse
|
15
|
Poplewska I, Łyskowski A, Kołodziej M, Szałański P, Piątkowski W, Antos D. Determination of protein crystallization kinetics by a through-flow small-angle X-ray scattering method. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2018.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Kurzweil-Segev Y, Popov I, Eisenberg I, Yochelis S, Keren N, Paltiel Y, Feldman Y. Confined water dynamics in a hydrated photosynthetic pigment-protein complex. Phys Chem Chem Phys 2017; 19:28063-28070. [PMID: 28994836 DOI: 10.1039/c7cp05417c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water is of fundamental importance for life. It plays a critical role in all biological systems. In phycocyanin, a pigment-protein complex, the hydration level influences its absorption spectrum. However, there is currently a gap in the understanding of how protein interfaces affect water's structure and properties. This work presents combined dielectric and calorimetric measurements of hydrated phycocyanin with different levels of hydration in a broad temperature interval. Based on the dielectric and calorimetric tests, it was shown that two types of water exist in the phycocyanin hydration shell. One is confined water localized inside the phycocyanin ring and the second is the water that is embedded in the protein structure and participates in the protein solvation. The water confined in the phycocyanin ring melts at the temperature 195 ± 3 K and plays a role in the solvation at higher temperatures. Moreover, the dynamics of all types of water was found to be effected by the presence of the ionic buffer.
Collapse
Affiliation(s)
- Yael Kurzweil-Segev
- Applied Physics Department and the Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | | | | | | | | | |
Collapse
|
17
|
A Study of Moisture Sorption and Dielectric Processes of Starch and Sodium Starch Glycolate : Theme: Formulation and Manufacturing of Solid Dosage Forms Guest Editors: Tony Zhou and Tonglei Li. Pharm Res 2017; 34:2675-2688. [PMID: 28875274 DOI: 10.1007/s11095-017-2252-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE This study explored the potential of combining the use of moisture sorption isotherms and dielectric relaxation profiles of starch and sodium starch glycolate (SSG) to probe the location of moisture in dried and hydrated samples. METHODS Starch and SSG samples, dried and hydrated, were prepared. For hydrated samples, their moisture contents were determined. The samples were probed by dielectric spectroscopy using a frequency band of 0.1 Hz to 1 MHz to investigate their moisture-related relaxation profiles. The moisture sorption and desorption isotherms of starch and SSG were generated using a vapor sorption analyzer, and modeled using the Guggenheim-Anderson-de Boer equation. RESULTS A clear high frequency relaxation process was detected in both dried and hydrated starches, while for dried starch, an additional slower low frequency process was also detected. The high frequency relaxation processes in hydrated and dried starches were assigned to the coupled starch-hydrated water relaxation. The low frequency relaxation in dried starch was attributed to the local chain motions of the starch backbone. No relaxation process associated with water was detected in both hydrated and dried SSG within the frequency and temperature range used in this study. The moisture sorption isotherms of SSG suggest the presence of high energy free water, which could have masked the relaxation process of the bound water during dielectric measurements. CONCLUSION The combined study of moisture sorption isotherms and dielectric spectroscopy was shown to be beneficial and complementary in probing the effects of moisture on the relaxation processes of starch and SSG.
Collapse
|
18
|
Kim SB, Singh RS, Paul PKC, Debenedetti PG. Effects of disulfide bridges and backbone connectivity on water sorption by protein matrices. Sci Rep 2017; 7:7957. [PMID: 28801577 PMCID: PMC5554179 DOI: 10.1038/s41598-017-08561-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/13/2017] [Indexed: 01/31/2023] Open
Abstract
Understanding the water sorption behavior of protein powders is important in applications such as the preservation of protein-based pharmaceuticals. Most globular proteins exhibit a characteristic sigmoidal water adsorption isotherm at ambient conditions. However, it is not well understood how water sorption behavior is influenced by intrinsic factors that are related to structural properties of proteins. We investigate computationally how structural constraints on proteins influence the water sorption isotherms of amorphous protein powders. Specifically, we study the effects of non-local disulfide linkages and backbone connectivity using pheromone ER-23 and lysozyme as model proteins. We find that non-local disulfide linkages can significantly restrict structural changes during hydration and dehydration, and this in turn greatly reduces the extent of hysteresis between the adsorption and desorption branches. Upon removing the backbone connectivity by breaking all peptide bonds in lysozyme, we find that the hysteresis shifts towards the lower humidity regime, and the water uptake capacity is significantly enhanced. We attribute these changes to the higher aggregation propensity of the constraint-free amino acids in dehydrated condition, and the formation of a spanning water network at high hydration levels.
Collapse
Affiliation(s)
- Sang Beom Kim
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, 08544, United States
| | - Rakesh S Singh
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, 08544, United States
| | - Prem K C Paul
- Unilever R&D, Port Sunlight Laboratory, Wirral, CH63 3JW, United Kingdom
| | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, 08544, United States.
| |
Collapse
|
19
|
Kurzweil-Segev Y, Popov I, Solomonov I, Sagit I, Feldman Y. Dielectric Relaxation of Hydration Water in Native Collagen Fibrils. J Phys Chem B 2017; 121:5340-5346. [DOI: 10.1021/acs.jpcb.7b02404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Y. Kurzweil-Segev
- Department
of Applied Physics, The Hebrew University of Jerusalem, Edmond
J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Ivan Popov
- Department
of Applied Physics, The Hebrew University of Jerusalem, Edmond
J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
- Institute
of Physics, Kazan Federal University, Kremlevskaya str.18, Kazan 420008, Tatarstan, Russia
| | - Inna Solomonov
- Department
of Biological Regulation, Weitzman Institute of Science, Rehovot 761001, Israel
| | - Irit Sagit
- Department
of Biological Regulation, Weitzman Institute of Science, Rehovot 761001, Israel
| | - Yuri Feldman
- Department
of Applied Physics, The Hebrew University of Jerusalem, Edmond
J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
20
|
Kim SB, Sparano EM, Singh RS, Debenedetti PG. Microscopic Origin of Hysteresis in Water Sorption on Protein Matrices. J Phys Chem Lett 2017; 8:1185-1190. [PMID: 28234480 DOI: 10.1021/acs.jpclett.7b00184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Despite the importance of water sorption isotherms for a fundamental understanding of protein-water interactions, the microscopic origin of hysteresis between the adsorption and desorption branches is not well understood. Using our recently developed simulation technique, we compute the water sorption isotherms of two proteins, lysozyme and Trp-cage, a miniprotein. We explicitly compare protein-water interactions in adsorption and desorption processes, by analyzing local hydration in terms of hydrogen bonding, water density, and solvent-accessible surface area. We find that significant differences in hydration behavior between adsorption and desorption manifest themselves at the individual amino acid level, in particular around polar or charged residues. We confirm this observation by demonstrating that Trp-cage's hysteresis can be significantly reduced by mutating charged residues to alanine, a neutral and nonpolar amino acid.
Collapse
Affiliation(s)
- Sang Beom Kim
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
| | - Evan M Sparano
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
| | - Rakesh S Singh
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
| | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
21
|
Sasaki K, Panagopoulou A, Kita R, Shinyashiki N, Yagihara S, Kyritsis A, Pissis P. Dynamics of Uncrystallized Water, Ice, and Hydrated Protein in Partially Crystallized Gelatin–Water Mixtures Studied by Broadband Dielectric Spectroscopy. J Phys Chem B 2016; 121:265-272. [DOI: 10.1021/acs.jpcb.6b04756] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kaito Sasaki
- Department of Physics,
Graduate School of Science, Tokai University, 4-1-1 Kitakaname, Hiratuka-shi, Kanagawa, Japan
- Micro/Nano Technology Center, Tokai University, 4-1-1
Kitakaname, Hiratuka-shi, Kanagawa, Japan
| | - Anna Panagopoulou
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Rio Kita
- Department of Physics,
Graduate School of Science, Tokai University, 4-1-1 Kitakaname, Hiratuka-shi, Kanagawa, Japan
- Micro/Nano Technology Center, Tokai University, 4-1-1
Kitakaname, Hiratuka-shi, Kanagawa, Japan
| | - Naoki Shinyashiki
- Department of Physics,
Graduate School of Science, Tokai University, 4-1-1 Kitakaname, Hiratuka-shi, Kanagawa, Japan
| | - Shin Yagihara
- Department of Physics,
Graduate School of Science, Tokai University, 4-1-1 Kitakaname, Hiratuka-shi, Kanagawa, Japan
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Polycarpos Pissis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
22
|
Mohammad MA, Grimsey IM, Forbes RT. Equation to Line the Borders of the Folding-Unfolding Transition Diagram of Lysozyme. J Phys Chem B 2016; 120:6911-6. [PMID: 27341101 DOI: 10.1021/acs.jpcb.6b01317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is important for the formulators of biopharmaceuticals to predict the folding-unfolding transition of proteins. This enables them to process proteins under predetermined conditions, without denaturation. Depending on the apparent denaturation temperature (Tm) of lysozyme, we have derived an equation describing its folding-unfolding transition diagram. According to the water content and temperature, this diagram was divided into three different areas, namely, the area of the water-folded lysozyme phase, the area of the water-folded lysozyme phase and the bulk water phase, and the area of the denatured lysozyme phase. The water content controlled the appearance and intensity of the Raman band at ∼1787 cm(-1) when lysozyme powders were thermally denatured at temperatures higher than Tm.
Collapse
Affiliation(s)
- Mohammad Amin Mohammad
- Drug Delivery Group, School of Pharmacy, University of Bradford , Bradford, West Yorkshire BD7 1DP, U.K.,Department of Pharmaceutics, Faculty of Pharmacy, University of Damascus , Damascus, Syria
| | - Ian M Grimsey
- Drug Delivery Group, School of Pharmacy, University of Bradford , Bradford, West Yorkshire BD7 1DP, U.K
| | - Robert T Forbes
- Drug Delivery Group, School of Pharmacy, University of Bradford , Bradford, West Yorkshire BD7 1DP, U.K.,School of Pharmacy and Biological Sciences, University of Central Lancashire , Preston, Lancashire PR12HE, U.K
| |
Collapse
|
23
|
Kurzweil-Segev Y, Greenbaum (Gutina) A, Popov I, Golodnitsky D, Feldman Y. The role of the confined water in the dynamic crossover of hydrated lysozyme powders. Phys Chem Chem Phys 2016; 18:10992-9. [DOI: 10.1039/c6cp01084a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work presents combined dielectric and calorimetric measurements of hydrated lysozyme powders with different levels of hydration in a broad temperature interval.
Collapse
Affiliation(s)
- Y. Kurzweil-Segev
- The Hebrew University of Jerusalem
- Department of Applied Physics
- Jerusalem 91904
- Israel
| | - A. Greenbaum (Gutina)
- The Hebrew University of Jerusalem
- Department of Applied Physics
- Jerusalem 91904
- Israel
| | - I. Popov
- The Hebrew University of Jerusalem
- Department of Applied Physics
- Jerusalem 91904
- Israel
- Institute of Physics
| | - D. Golodnitsky
- School of Chemistry
- Applied Materials Research Center
- Tel Aviv University
- Tel Aviv
- Israel
| | - Yu. Feldman
- The Hebrew University of Jerusalem
- Department of Applied Physics
- Jerusalem 91904
- Israel
| |
Collapse
|
24
|
Novel thermoresponsive block copolymers having different architectures—structural, rheological, thermal, and dielectric investigations. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3282-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Panagopoulou A, Kyritsis A, Vodina M, Pissis P. Dynamics of uncrystallized water and protein in hydrated elastin studied by thermal and dielectric techniques. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:977-88. [DOI: 10.1016/j.bbapap.2013.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/15/2013] [Accepted: 03/16/2013] [Indexed: 11/24/2022]
|
26
|
|
27
|
Panagopoulou A, Kyritsis A, Shinyashiki N, Pissis P. Protein and Water Dynamics in Bovine Serum Albumin–Water Mixtures over Wide Ranges of Composition. J Phys Chem B 2012; 116:4593-602. [DOI: 10.1021/jp2105727] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. Panagopoulou
- Department of Physics, National Technical University of Athens, Zografou Campus,
157 80 Athens, Greece
| | - A. Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus,
157 80 Athens, Greece
| | - N. Shinyashiki
- Department
of Physics, Tokai University, Hiratsuka,
Kanagawa, 259-1292 Japan
| | - P. Pissis
- Department of Physics, National Technical University of Athens, Zografou Campus,
157 80 Athens, Greece
| |
Collapse
|
28
|
Kyritsis A, Spanoudaki A, Pandis C, Hartmann L, Pelster R, Shinyashiki N, Rodríguez Hernández J, Gómez Ribelles J, Monleón Pradas M, Pissis P. Water and polymer dynamics in poly(hydroxyl ethyl acrylate-co-ethyl acrylate) copolymer hydrogels. Eur Polym J 2011. [DOI: 10.1016/j.eurpolymj.2011.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Panagopoulou A, Kyritsis A, Sabater I Serra R, Gómez Ribelles JL, Shinyashiki N, Pissis P. Glass transition and dynamics in BSA-water mixtures over wide ranges of composition studied by thermal and dielectric techniques. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1984-96. [PMID: 21798376 DOI: 10.1016/j.bbapap.2011.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 11/24/2022]
Abstract
Protein-water dynamics in mixtures of water and a globular protein, bovine serum albumin (BSA), was studied over wide ranges of composition, in the form of solutions or hydrated solid pellets, by differential scanning calorimetry (DSC), thermally stimulated depolarization current technique (TSDC) and dielectric relaxation spectroscopy (DRS). Additionally, water equilibrium sorption isotherm (ESI) measurements were performed at room temperature. The crystallization and melting events were studied by DSC and the amount of uncrystallized water was calculated by the enthalpy of melting during heating. The glass transition of the system was detected by DSC for water contents higher than the critical water content corresponding to the formation of the first sorption layer of water molecules directly bound to primary hydration sites, namely 0.073 (grams of water per grams of dry protein), estimated by ESI. A strong plasticization of the T(g) was observed by DSC for hydration levels lower than those necessary for crystallization of water during cooling, i.e. lower than about 0.3 (grams of water per grams of hydrated protein) followed by a stabilization of T(g) at about -80°C for higher water contents. The α relaxation associated with the glass transition was also observed in dielectric measurements. In TSDC a microphase separation could be detected resulting in double T(g) for some hydration levels. A dielectric relaxation of small polar groups of the protein plasticized by water, overlapped by relaxations of uncrystallized water molecules, and a separate relaxation of water in the crystallized water phase (bulk ice crystals) were also recorded.
Collapse
Affiliation(s)
- A Panagopoulou
- National Technical University of Athens, Department of Physics, Athens, Greece.
| | | | | | | | | | | |
Collapse
|