1
|
Corrigan BM, O'Mahony JA, Fenelon MA. The effect of whey source on heat-induced aggregation of casein and whey protein mixtures of relevance to infant nutritional product formulation. J Dairy Sci 2023; 106:8299-8311. [PMID: 38040197 DOI: 10.3168/jds.2022-22088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/25/2022] [Indexed: 12/03/2023]
Abstract
Sweet and, to a lesser extent, acid whey protein ingredients can be used for the formulation of infant nutritional products. Unlike acid whey, sweet whey contains caseinomacropeptide (CMP), a heat-stable peptide liberated from κ-casein during cheese and rennet casein manufacture. Four protein systems-sweet whey (SW) and acid whey (AW), with or without standardization for CMP protein content-were added to skim milk (50/50, wt/wt) and unheated or heated to 85 or 110°C. These 12 samples were assessed for physicochemical stability in the presence of added calcium at pH 6.8. The effect of CMP content on the physicochemical properties of the protein systems was also assessed. Without preheat treatment, mixtures of AW and skim milk (SM) were more heat stable than SW and SM, demonstrating the effect of whey protein type on heat stability. Preheat treatment of the SW in the presence of SM significantly improved the heat stability of the resultant protein systems on subsequent heating. All of the protein systems had significantly lower heat stability with the addition of Ca, although the reduction was significantly smaller for the heated protein systems than the unheated controls. The findings can help identify heating parameters and ingredients for optimizing processing stability and physicochemical characteristics of nutritional beverages such as infant formulations.
Collapse
Affiliation(s)
- Bernard M Corrigan
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| | - James A O'Mahony
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland T12 TP07
| | - Mark A Fenelon
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996; School of Food and Nutritional Sciences, University College Cork, Cork, Ireland T12 TP07.
| |
Collapse
|
2
|
Liu W, Feng Y, Delaplace G, André C, Chen XD. Effect of calcium on the reversible and irreversible thermal denaturation pathway of β-lactoglobulin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Modelling the reaction kinetics of β-lactoglobulin and κ-casein heat-induced interactions in skim milk. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Abstract
The introduction of membrane filtration during infant milk formula (IMF) processing represents an innovative approach to increasing native protein content compared to standard IMF. The objective of this study was to compare IMF powder produced using a standard process and IMF produced from raw bovine skim milk with added whey protein isolate using a split-stream process incorporating a ceramic 1.4 μm filter followed by a polyvinylidene difluoride polymeric 0.2 μm filter. Retentates from 0.2 μm microfiltration (MF) were blended with fat, lactose, and minerals and subsequently high-temperature treated (125 °C × 5 s). The heat-treated retentate was merged with the permeate from the 0.2 μm MF, homogenised, and spray-dried (referred to as membrane-filtered IMF or MEM-IMF). A control IMF was also produced using standard treatment (referred to as high-temperature IMF or HT-IMF) without membrane filtration. Both IMF products were characterised by high-performance liquid chromatography, particle size, and enzyme activity assays. MEM-IMF powder had significantly higher amounts of native (1.1 g per 100 g powder) and monomeric (1.48 g per 100 g powder) whey proteins when compared to 0.18 and 0.46 g per 100 g powder in HT-IMF, respectively. MEM-IMF also exhibited a lower degree of protein aggregation compared to HT-IMF. Comparison of microbial and Maillard by-products markers demonstrated that a safe IMF product could be produced at scale, although levels of the Maillard by-product marker, carboxymethyl-lysine, were not significantly reduced in MEM-IMF. This study demonstrates how membrane filtration can be used to retain native proteins during IMF manufacture.
Collapse
|
5
|
Asaduzzaman M, Mahomud MS, Haque ME. Heat-Induced Interaction of Milk Proteins: Impact on Yoghurt Structure. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:5569917. [PMID: 34604378 PMCID: PMC8483934 DOI: 10.1155/2021/5569917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/16/2021] [Accepted: 09/11/2021] [Indexed: 12/03/2022]
Abstract
Heating milk for yoghurt preparation has a significant effect on the structural properties of yoghurt. Milk heated at elevated temperature causes denaturation of whey protein, aggregation, and some case gelation. It is important to understand the mechanism involved in each state of stabilization for tailoring the final product. We review the formation of these complexes and their consequence on the physical, rheological, and microstructural properties of acid milk gels. To investigate the interactions between denatured whey protein and casein, the formation of covalent and noncovalent bonds, localization of the complexes, and their impact on ultimate gelation and final yoghurt texture are reviewed. The information regarding this fundamental mechanism will be beneficial to develop uniform quality yoghurt texture and potential interest of future research.
Collapse
Affiliation(s)
- Md Asaduzzaman
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Md Sultan Mahomud
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Mohammod Enamul Haque
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Bangladesh Milk Producers' Cooperative Union Ltd., Dhaka 1216, Bangladesh
| |
Collapse
|
6
|
Effect of casein/whey ratio on the thermal denaturation of whey proteins and subsequent fouling in a plate heat exchanger. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Lavoisier A, Vilgis TA, Aguilera JM. Effect of cysteine addition and heat treatment on the properties and microstructure of a calcium-induced whey protein cold-set gel. Curr Res Food Sci 2020; 1:31-42. [PMID: 32914103 PMCID: PMC7473375 DOI: 10.1016/j.crfs.2019.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A model gel of whey protein isolate (WPI) was prepared by cold gelation with calcium. This system was modified by the addition of free cysteine residues (Cys) at different steps of the process. The WPI cold-set gels obtained were then subjected to heat treatment at 90°C. First, the effect of Cys addition on the heat-induced aggregation of WPI was studied through Atomic Force Microscopy (AFM) and infrared spectroscopy (ATR-FTIR), while Cys' effect on cold gelation was observed by AFM, Confocal Laser Scanning Microscopy (CLSM) and oscillatory rheology (amplitude sweeps). The impact of heating on the microstructure and the viscoelastic properties of the WPI cold-set gels were finally investigated through several techniques, including DSC, ATR-FTIR, CLSM, cryo-SEM, and rheological measurements (temperature sweeps). When added during the first step of cold gelation, Cys modified heat-induced aggregation of WPI, resulting in the formation of a denser gel network with a fractal dimension (Df) of 2.8. However, the addition of Cys during the second step of cold gelation led to the formation of highly branched clusters of WPI and a looser gel network was observed (Df = 2.4). In this regard, the use and limitations of oscillatory rheology and the "Kraus model" to determine the Df of WPI cold-set gels was discussed. The viscoelastic properties and the microstructure of the WPI cold-set gels were irreversibly modified by heating. Gels were stiffer, more brittle, and coarser after heat treatment. New disulfide bonds and calcium bridges formed, as well as H-bonded β-sheets, all contributing to the formation of the final gel network structure.
Collapse
Affiliation(s)
- Anaïs Lavoisier
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Macul, Santiago, Chile.,Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Thomas A Vilgis
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - José Miguel Aguilera
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Macul, Santiago, Chile
| |
Collapse
|
8
|
Chemical composition, protein profile and physicochemical properties of whey protein concentrate ingredients enriched in α-lactalbumin. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Gaspard SJ, Sunds AV, Larsen LB, Poulsen NA, O'Mahony JA, Kelly AL, Brodkorb A. Influence of desialylation of caseinomacropeptide on the denaturation and aggregation of whey proteins. J Dairy Sci 2020; 103:4975-4990. [PMID: 32229125 DOI: 10.3168/jds.2019-17780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/24/2020] [Indexed: 11/19/2022]
Abstract
The effect of the addition of caseinomacropeptide (CMP) or desialylated CMP on the heat-induced denaturation and aggregation of whey proteins was investigated in the pH range 3 to 7 after heating at 80°C for 30 min. The rate and temperature of denaturation, the extent of aggregation, and the changes in secondary structure of the whey proteins heated in presence of CMP or desialylated CMP were measured. The sialic acid bound to CMP favored the denaturation and aggregation of whey proteins when the whey proteins were oppositely charged to CMP at pH 4. A transition occurred at pH 6, below which the removal of sialic acid enhanced the stabilizing properties of CMP against the denaturation and aggregation of the whey proteins. At pH >6, the interactions between desialylated CMP and the whey proteins led to more extensive denaturation and aggregation. Sialic acid bound to CMP influenced the denaturation and aggregation behavior of whey proteins in a pH-dependent manner, and this should be considered in future studies on the heat stability of such systems containing CMP.
Collapse
Affiliation(s)
- Sophie J Gaspard
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland; School of Food and Nutritional Sciences, University College Cork, T12 YN60, Ireland
| | - Anne V Sunds
- Department of Food Science, Faculty of Technical Sciences, Aarhus University, 8200 Aarhus N Denmark
| | - Lotte B Larsen
- Department of Food Science, Faculty of Technical Sciences, Aarhus University, 8200 Aarhus N Denmark
| | - Nina A Poulsen
- Department of Food Science, Faculty of Technical Sciences, Aarhus University, 8200 Aarhus N Denmark
| | - James A O'Mahony
- School of Food and Nutritional Sciences, University College Cork, T12 YN60, Ireland
| | - Alan L Kelly
- School of Food and Nutritional Sciences, University College Cork, T12 YN60, Ireland
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| |
Collapse
|
10
|
Wagner J, Biliaderis CG, Moschakis T. Whey proteins: Musings on denaturation, aggregate formation and gelation. Crit Rev Food Sci Nutr 2020; 60:3793-3806. [DOI: 10.1080/10408398.2019.1708263] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Janine Wagner
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Costas G. Biliaderis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Thomas Moschakis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
11
|
Kelleher CM, Aydogdu T, Murphy KM, O'Mahony JA, Kelly AL, O'Callaghan DJ, McCarthy NA. The effect of protein profile and preheating on denaturation of whey proteins and development of viscosity in milk protein beverages during heat treatment. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12679] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Clodagh M Kelleher
- Food Chemistry and Technology Department Teagasc Food Research Centre Cork Ireland
- School of Food and Nutritional Sciences University College Cork Cork Ireland
| | - Tugce Aydogdu
- Food Chemistry and Technology Department Teagasc Food Research Centre Cork Ireland
- School of Food and Nutritional Sciences University College Cork Cork Ireland
| | - Kevin M Murphy
- Food Chemistry and Technology Department Teagasc Food Research Centre Cork Ireland
| | - James A O'Mahony
- School of Food and Nutritional Sciences University College Cork Cork Ireland
| | - Alan L Kelly
- School of Food and Nutritional Sciences University College Cork Cork Ireland
| | - Donal J O'Callaghan
- Food Chemistry and Technology Department Teagasc Food Research Centre Cork Ireland
| | - Noel A McCarthy
- Food Chemistry and Technology Department Teagasc Food Research Centre Cork Ireland
| |
Collapse
|
12
|
Investigation on the influence of high protein concentrations on the thermal reaction behaviour of β-lactoglobulin by experimental and numerical analyses. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Shi C, He Y, Ding M, Wang Y, Zhong J. Nanoimaging of food proteins by atomic force microscopy. Part II: Application for food proteins from different sources. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Modelling the changes in viscosity during thermal treatment of milk protein concentrate using kinetic data. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Kelleher CM, Tobin JT, O'Mahony JA, Kelly AL, O'Callaghan DJ, McCarthy NA. A comparison of pilot-scale supersonic direct steam injection to conventional steam infusion and tubular heating systems for the heat treatment of protein-enriched skim milk-based beverages. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Zhang X, Sun X, Gao F, Wang J, Wang C. Systematical characterization of physiochemical and rheological properties of thermal-induced polymerized whey protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:923-932. [PMID: 30009456 DOI: 10.1002/jsfa.9264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/03/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Effects of pH (6-8), protein concentration (60-110, g kg-1 ), heating temperature (70-95 °C) and time (5-30 min) on physiochemical and rheological properties of thermal-induced polymerized whey protein isolate (PWP) were systematically investigated. Degree of denaturation, particle size, zeta potential, free sulfhydryl group content, surface hydrophobicity and apparent viscosity were determined. RESULTS Heating whey protein above 75 °C at pH 7 or 8 resulted in denaturation of 80-90% whey protein. pH variation had a remarkable influence on particle size of samples (P < 0.05), whereas heating temperature and time did not generate significant changes. Zeta potential of PWP samples fell in the range of -30 to -40 mV. Free sulfhydryl group content of PWP samples decreased with increasing level regarding each factor. Surface hydrophobicity analysis showed that samples at higher pH or concentration became less hydrophobic, and increasing heating temperature or time resulted in higher hydrophobicity index. Time sweep test revealed that increasing protein concentration, heating temperature or time led to higher apparent viscosity. Flow behavior of PWP samples approached Newtonian character as protein concentration, heating temperature or time decreased. CONCLUSION Systematic data may provide helpful information in designing a heating process for dairy products and application of PWP in the food industry. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuefei Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xiaomeng Sun
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Feng Gao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jiaqi Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
17
|
Gaspard SJ, Brodkorb A. The Use of High Performance Liquid Chromatography for the Characterization of the Unfolding and Aggregation of Dairy Proteins. Methods Mol Biol 2019; 2039:103-115. [PMID: 31342422 DOI: 10.1007/978-1-4939-9678-0_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High-performance liquid chromatography (HPLC) is routinely used to identify and characterize proteins. HPLC can help to understand protein aggregation processes in dairy products, which are induced by common industrial processing steps such as heat treatment. In this chapter, three complementary chromatographic methods are described, which are based on the principles of size exclusion and reversed-phase chromatography. These methods are used to determine the degree of denaturation and aggregation of proteins, and estimate the molecular weight of these aggregates.
Collapse
Affiliation(s)
- Sophie Jeanne Gaspard
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.,School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.
| |
Collapse
|
18
|
Buggy AK, McManus JJ, Brodkorb A, Hogan SA, Fenelon MA. Pilot-scale formation of whey protein aggregates determine the stability of heat-treated whey protein solutions—Effect of pH and protein concentration. J Dairy Sci 2018; 101:10819-10830. [DOI: 10.3168/jds.2017-14177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/10/2018] [Indexed: 11/19/2022]
|
19
|
|
20
|
Ali A, Le Potier I, Huang N, Rosilio V, Cheron M, Faivre V, Turbica I, Agnely F, Mekhloufi G. Effect of high pressure homogenization on the structure and the interfacial and emulsifying properties of β-lactoglobulin. Int J Pharm 2018; 537:111-121. [DOI: 10.1016/j.ijpharm.2017.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/05/2017] [Accepted: 12/09/2017] [Indexed: 12/25/2022]
|
21
|
Wang C, Zhang X, Wang H, Wang J, Guo M. Effects of amidated low methoxyl pectin on physiochemical and structural properties of polymerized whey proteins. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1508074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xuefei Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Hao Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jiaqi Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Mingruo Guo
- College of Food Science and Engineering, Northeast Agricultural University, Haerbin, China
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT, USA
| |
Collapse
|
22
|
Isolation and characterisation of κ-casein/whey protein particles from heated milk protein concentrate and role of κ-casein in whey protein aggregation. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2017.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Nikolaidis A, Andreadis M, Moschakis T. Effect of heat, pH, ultrasonication and ethanol on the denaturation of whey protein isolate using a newly developed approach in the analysis of difference-UV spectra. Food Chem 2017; 232:425-433. [DOI: 10.1016/j.foodchem.2017.04.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 11/26/2022]
|
24
|
Cheison SC, Kulozik U. Impact of the environmental conditions and substrate pre-treatment on whey protein hydrolysis: A review. Crit Rev Food Sci Nutr 2017; 57:418-453. [PMID: 25976220 DOI: 10.1080/10408398.2014.959115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proteins in solution are subject to myriad forces stemming from interactions with each other as well as with the solvent media. The role of the environmental conditions, namely pH, temperature, ionic strength remains under-estimated yet it impacts protein conformations and consequently its interaction with, and susceptibility to, the enzyme. Enzymes, being proteins are also amenable to the environmental conditions because they are either activated or denatured depending on the choice of the conditions. Furthermore, enzyme specificity is restricted to a narrow regime of optimal conditions while opportunities outside the optimum conditions remain untapped. In addition, the composition of protein substrate (whether mixed or single purified) have been underestimated in previous studies. In addition, protein pre-treatment methods like heat denaturation prior to hydrolysis is a complex phenomenon whose progression is influenced by the environmental conditions including the presence or absence of sugars like lactose, ionic strength, purity of the protein, and the molecular structure of the mixed proteins particularly presence of free thiol groups. In this review, we revisit protein hydrolysis with a focus on the impact of the hydrolysis environment and show that preference of peptide bonds and/or one protein over another during hydrolysis is driven by the environmental conditions. Likewise, heat-denaturing is a process which is dependent on not only the environment but the presence or absence of other proteins.
Collapse
Affiliation(s)
| | - Ulrich Kulozik
- b Chair for Food Process Engineering and Dairy Technology Department , ZIEL Technology Section, Technische Universität München , Weihenstephaner Berg 1, Freising , Germany
| |
Collapse
|
25
|
Separation of the effects of denaturation and aggregation on whey-casein protein interactions during the manufacture of a model infant formula. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s13594-016-0303-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
|
27
|
Loveday SM, Peram MR, Singh H, Ye A, Jameson GB. Digestive diversity and kinetic intrigue among heated and unheated β-lactoglobulin species. Food Funct 2015; 5:2783-91. [PMID: 25259629 DOI: 10.1039/c4fo00362d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food processing often alters the structure of proteins, and proteins are deliberately denatured and aggregated to improve technological functionality in many cases. However, the digestive consequences of processing-induced alterations to protein structure have only recently been studied. Here we explored the process-structure-digestibility relationship in the context of heat-processing effects on the structure and gastric digestibility of the bovine whey protein β-lactoglobulin (β-lg). Heating β-lg produces an array of non-native monomers, dimers and aggregates, and we have characterised these with reverse-phase high performance liquid chromatography (RP-HPLC) as a complement to our earlier work using polyacrylamide gel electrophoresis (PAGE) techniques. Using a combination of SDS-PAGE and RP-HPLC we have identified pepsin-resistant dimers and peptides that appear early in digestion. In an unexpected finding, native β-lg underwent complete hydrolysis during prolonged incubation (48 h) with pepsin. Two phases of hydrolysis were identified, and the transition between phases appears to result from alterations to the secondary structure of β-lg at 3-4 h, as measured with circular dichroism spectroscopy, and/or the binding and release of a pepsin inhibitor peptide. This work has unpacked some of the complexities of the processing-structure-digestibility relationship in a highly simplified system; further work is needed to explore the implications of these findings for food processors, regulatory authorities and consumers.
Collapse
Affiliation(s)
- Simon M Loveday
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | | | | | | | | |
Collapse
|
28
|
Serfert Y, Lamprecht C, Tan CP, Keppler J, Appel E, Rossier-Miranda F, Schroen K, Boom R, Gorb S, Selhuber-Unkel C, Drusch S, Schwarz K. Characterisation and use of β-lactoglobulin fibrils for microencapsulation of lipophilic ingredients and oxidative stability thereof. J FOOD ENG 2014. [DOI: 10.1016/j.jfoodeng.2014.06.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Jiang Z, Rai DK, O'Connor PM, Brodkorb A. Heat-induced Maillard reaction of the tripeptide IPP and ribose: Structural characterization and implication on bioactivity. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.09.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
You J, Luo Y, Shen H. Effect of Heat Treatment and Lyophilization on the Physicochemical Properties of Water-Soluble Proteins from Silver Carp (Hypophthalmichthys molitrix
). J Food Biochem 2012. [DOI: 10.1111/jfbc.12012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juan You
- College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 China
| | - Yongkang Luo
- College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 China
| | - Huixing Shen
- College of Science; China Agricultural University; Beijing 100083 China
| |
Collapse
|
31
|
Jiang Z, Brodkorb A. Structure and antioxidant activity of Maillard reaction products from α-lactalbumin and β-lactoglobulin with ribose in an aqueous model system. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
|