1
|
Palaniappan M. Sustainable microcrystalline cellulose extracted from biowaste Albezia lebeck L. leaves: Biomass exfoliation and physicochemical characterization. PHYSIOLOGIA PLANTARUM 2024; 176:e14447. [PMID: 39149796 DOI: 10.1111/ppl.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 08/17/2024]
Abstract
There is a focus on sustainability when manufacturing materials. Utilizing biobased materials and replacing fossil-based products is the main research focus. Bio-composite materials are applied to packaging, filler coatings, and pharmaceuticals. Here, we used the leaves of the agro-waste plant Albizia lebeck L. to extract cellulose. Chemical treatment causing strong acid hydrolysis successfully extracted the cellulose content from the leaves. The cellulose obtained was then strengthened with polylactic acid to make a biobased film for future applications. Fourier transform spectroscopy, scanning electron microscopy, thermal analysis, particle size analysis, visible UV and elemental analysis were all used to characterize the extracted cellulose. SEM and mechanical property analysis were used to check and describe the quality of the reinforced biofilm. The greatest cellulose yield from this raw material was 50.2%. The crystallinity index and crystallite size (CI 70.3% and CS 11.29 nm) were high in the extracted cellulose. The TG (DTG) curve analysis derivative revealed cellulose particle breakdown was initiated around 305.2°C and can endure temperatures up to 600°C. Biofilms reinforced with polylactic acid cellulose (1, 2, 3, and 5% by weight %) exhibited a smooth and parallel surface. As the filler concentration increased, minor agglomeration occurred. The tensile strength of pure polylactic acid (PLA) (34.72 MPa) was extended up to 38.91 MPa for 5% filler. Similarly, Young's modulus also increased to 5.24 MPa. However, the elongation break decreases with the increase of filler content, and the least value of decrease is 7.5 MPa. Concerning prospective implementations, it is expected that the biobased film and cellulose particles will prove to be more functional.
Collapse
Affiliation(s)
- Murugesan Palaniappan
- Department of Mechanical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Molaveisi M, Taheri RA, Dehnad D. Innovative application of the Echinacea purpurea (L.) extract-phospholipid phytosomes embedded within Alyssum homolocarpum seed gum film for enhancing the shelf life of chicken meat. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Poly (lactic acid) and whey protein/pullulan composite bilayer film containing phage A511 as an anti-Listerial packaging for chicken breast at refrigerated temperatures. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Gulzar S, Tagrida M, Prodpran T, Benjakul S. Antimicrobial film based on polylactic acid coated with gelatin/chitosan nanofibers containing nisin extends the shelf life of Asian seabass slices. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Yuan H, Zhang Y, Xue Z. Preliminary Study on a Biocompatible Cellulose Waterborne Polyurethane Composite Membrane. ACS OMEGA 2022; 7:30849-30855. [PMID: 36092637 PMCID: PMC9453966 DOI: 10.1021/acsomega.2c02478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
A promising technique for repairing necrotic mucosa of human organs has emerged, in which composite films are used to replace human mucosa. In this work, neutral alpha-amylase corrosion solution with a concentration of 0.40 mg/mL and hydrochloric acid corrosion solution at pH 0.9 were used as simulated oral cavity and gastric fluid environments under the condition of human body temperature. The prepared cellulose film and the cellulose water-based polyurethane composite film (the concentration of water-based polyurethane was 90, 92, 94, 96, or 98%) were mixed in the simulated environment. The composite membrane had a weaker water swelling property (water swelling degree of 4.32%), weaker surface hydrophilicity (water contact angle of 59.05°), and stronger enzyme activity (1.77 U). This functional film composite material is expected to become an ideal substitute for human mucosa.
Collapse
|
6
|
Psyllium seed gum films loading Oliveria decumbens essential oil encapsulated in nanoliposomes: preparation and characterization. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Sabaghi M, Tavasoli S, Jamali SN, Katouzian I, Faridi Esfanjani A. The Pros and Cons of Incorporating Bioactive Compounds Within Food Networks and Food Contact Materials: a Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02837-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Hajirostamloo B, Mortazavi SA, Molaveisi M, Dehnad D. Improvement of soy protein isolate-Alyssum homolocarpum seed gum blend film through intermolecular bonds induced by the mixture of plant extracts. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01359-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
9
|
Hajirostamloo B, Molaveisi M. Active Alyssum homolocarpum seed gum films containing microencapsulated Echinacea purpurea (L.) extract; study of physicochemical properties and its application in quail meat packaging. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01317-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Leelaphiwat P, Pechprankan C, Siripho P, Bumbudsanpharoke N, Harnkarnsujarit N. Effects of nisin and EDTA on morphology and properties of thermoplastic starch and PBAT biodegradable films for meat packaging. Food Chem 2022; 369:130956. [PMID: 34479016 DOI: 10.1016/j.foodchem.2021.130956] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022]
Abstract
Biodegradable active packaging was produced by compounding nisin (3, 6 and 9%) and nisin-ethylenediaminetetraacetic acid (EDTA) (3 and 6%) mixtures with poly(butylene adipate terephthalate) and thermoplastic starch blends (PBAT/TPS) by blown-film extrusion. Nisin and EDTA interacted with polymers, involving CO stretching of ester bonds and increased compatibility. This plasticized the films and modified the crystallinity, surface roughness and thermal relaxation behavior. Barrier properties were improved due to modified hydrophilic-hydrophobic properties, compact structures and crystallites that restricted vapor and oxygen permeation. PBAT/TPS films containing EDTA and nisin effectively inhibited lipid degradation in pork tissues corresponding with stabilizing the CO ester bond of triacylglycerol. Microbial growth was also inhibited, particularly in EDTA-containing films up to 1.4 log. Inactivation of microorganisms stabilized redness and delayed meat discoloration, preserving the quality of packaged pork. Interaction between nisin, EDTA and polymers modified the morphology and film properties and functionalized biodegradable food packaging to inactivate microorganisms.
Collapse
Affiliation(s)
- Pattarin Leelaphiwat
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
| | - Chayanat Pechprankan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
| | - Paphawin Siripho
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
| | - Nattinee Bumbudsanpharoke
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
11
|
Lopresti F, Botta L, La Carrubba V, Di Pasquale L, Settanni L, Gaglio R. Combining carvacrol and nisin in biodegradable films for antibacterial packaging applications. Int J Biol Macromol 2021; 193:117-126. [PMID: 34688672 DOI: 10.1016/j.ijbiomac.2021.10.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/06/2021] [Accepted: 10/17/2021] [Indexed: 10/20/2022]
Abstract
In this work, the feasibility of antibacterial biopolymeric films containing carvacrol (CRV) and a nisin commercial formulation (Nis) for potential food packaging applications was investigated. As polymer matrix, a commercial biodegradable polymer formulation of Mater-Bi (MB) was chosen due to its significant food packaging applications. CRV and Nis were chosen due to their well-established antibacterial properties and their potential synergistic effect. MB/CRV, MB/Nis, and MB/CRV/Nis systems were produced by melt mixing and compression molding. The mechanical properties of the films were evaluated by tensile tests. Differential scanning calorimetry was assessed aiming at investigating the effect of the two compounds and their mixture on the thermal properties of MB. The release profile of CRV and Nis from the MB-based films was evaluated in water at 4 °C by UV-Vis measurements and it was fitted with a power-law model. The antibacterial activity of MB-based films was tested in vitro against Listeria monocytogenes, Salmonella enteritidis, Escherichia coli, and Staphylococcus aureus. The combination of CRV and Nis strongly affected the properties of the MB-based films and ensured higher antibacterial activity if compared to MB/CRV and MB/Nis systems.
Collapse
Affiliation(s)
- Francesco Lopresti
- Dipartimento di Ingegneria, Università degli Studi di Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy
| | - Luigi Botta
- Dipartimento di Ingegneria, Università degli Studi di Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy.
| | - Vincenzo La Carrubba
- Dipartimento di Ingegneria, Università degli Studi di Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy
| | - Liliana Di Pasquale
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| |
Collapse
|
12
|
An experimental study on characteristics of sago starch film treated with methanol extract from Artemisia sieberi Besser. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00895-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Webber JL, Namivandi-Zangeneh R, Drozdek S, Wilk KA, Boyer C, Wong EHH, Bradshaw-Hajek BH, Krasowska M, Beattie DA. Incorporation and antimicrobial activity of nisin Z within carrageenan/chitosan multilayers. Sci Rep 2021; 11:1690. [PMID: 33462270 PMCID: PMC7814039 DOI: 10.1038/s41598-020-79702-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
An antimicrobial peptide, nisin Z, was embedded within polyelectrolyte multilayers (PEMs) composed of natural polysaccharides in order to explore the potential of forming a multilayer with antimicrobial properties. Using attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR), the formation of carrageenan/chitosan multilayers and the inclusion of nisin Z in two different configurations was investigated. Approximately 0.89 µg cm-2 nisin Z was contained within a 4.5 bilayer film. The antimicrobial properties of these films were also investigated. The peptide containing films were able to kill over 90% and 99% of planktonic and biofilm cells, respectively, against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) strains compared to control films. Additionally, surface topography and wettability studies using atomic force microscopy (AFM) and the captive bubble technique revealed that surface roughness and hydrophobicity was similar for both nisin containing multilayers. This suggests that the antimicrobial efficacy of the peptide is unaffected by its location within the multilayer. Overall, these results demonstrate the potential to embed and protect natural antimicrobials within a multilayer to create functionalised coatings that may be desired by industry, such as in the food, biomaterials, and pharmaceutical industry sectors.
Collapse
Affiliation(s)
- Jessie L Webber
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Rashin Namivandi-Zangeneh
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sławomir Drozdek
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Kazimiera A Wilk
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | | | - Marta Krasowska
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| | - David A Beattie
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| |
Collapse
|
14
|
Ariahu C, Kamaldeen O, Yusufu M. Kinetic and thermodynamic studies on the degradation of carotene in carrot powder beads. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Application of soy protein isolate and cassava starch based film solutions as matrix for ionic encapsulation of carrot powders. Journal of Food Science and Technology 2020; 57:4171-4181. [PMID: 33071338 DOI: 10.1007/s13197-020-04455-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Research into characterization and storage stability of carrot powders encapsulated in soy protein isolate and cassava starch based film solutions via ionic gelation method was performed. Carotene a major antioxidant presents in carrot powders plays a beneficial role in preventing some health problems such as cancer, and cardiovascular/coronary heart diseases. Consequently, the carotene contains a hydrocarbon with an unsaturated double bond or its oxygen derivatives, which makes it unstable and sensitive to moisture, heat, oxygen, light, and acid. There is therefore the need for encapsulation of this nutritive and healthy component of carrot powders to extend its stability. Film solutions required for encapsulation of the carrot powders were prepared from soy protein isolate, cassava starch and their combinations, and were as well categorized into plasticized and non-plasticized using glycerol in combination with sorbitol as plasticizer. Ionic encapsulation was achieved using sodium alginate for gelation of carrot powder beads in 5% calcium chloride solution for curing. Distinction in gelation features of the film solutions as a result of blend compositions as well as the addition of plasticizers substantially influenced the quality criteria of encapsulated carrot powder beads such as encapsulation efficiency, encapsulation yield, moisture content, hygroscopicity, particle size, and also their sensory qualities. Their values varied between 70.93-82.59%, 70.35-75.35%, 9.88-13.04%, 40.00-49.00 g/100 g, and 2.18-2.64 mm respectively. 100% soy protein isolate based film solution performed much better than 100% cassava starch based film solutions in preventing degradation of carotene content of the encapsulated carrot powder beads. Plasticization of the membrane solutions caused greater carotene degradation. Combination of soy-protein isolate (50%) and cassava starch (50%) composite based film solutions gave the best protection for carotene degradation having shelf life of 106 days while plasticized cassava starch based was the least with the shelf life of 13 days which is closed to that of the control (carrot powders).
Collapse
|
16
|
Long-Term Antibacterial Effect of Electrospun Polyvinyl Alcohol/Polyacrylate Sodium Nanofiber Containing Nisin-Loaded Nanoparticles. NANOMATERIALS 2020; 10:nano10091803. [PMID: 32927663 PMCID: PMC7559420 DOI: 10.3390/nano10091803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/26/2022]
Abstract
Response Surface Methodology (RSM) was used to assess the optimal conditions for a Water/Oil/Water (W/O/W) emulsion for encapsulated nisin (EN). Nano-encapsulated nisin had high encapsulation efficiencies (EE) (86.66 ± 1.59%), small particle size (320 ± 20 nm), and low polydispersity index (0.27). Biodegradable polyvinyl alcohol (PVA) and polyacrylate sodium (PAAS) were blended with EN and prepared by electrospinning. Scanning electron microscopy (SEM) revealed PVA/PAAS/EN nanofibers with good morphology, and that their EN activity and mechanical properties were enhanced. When the ultrasonication time was 15 min and 15% EN was added, the nanofibers had optimal mechanical, light transmittance, and barrier properties. Besides, the release behavior of nisin from the nanofibers fit the Korsemeyer–Peppas (KP) model, a maximum nisin release rate of 85.28 ± 2.38% was achieved over 16 days. At 4 °C, the growth of Escherichia coli and Staphylococcus aureus was inhibited for 16 days in nanofibers under different ultrasonic times. The application of the fiber in food packaging can effectively inhibit the activity of food microorganisms and prolong the shelf life of strawberries, displaying a great potential application for food preservation.
Collapse
|
17
|
Bio-based antimicrobial packaging from sugarcane bagasse nanocellulose/nisin hybrid films. Int J Biol Macromol 2020; 161:627-635. [PMID: 32535206 DOI: 10.1016/j.ijbiomac.2020.06.081] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
Bio-based nanomaterials with antimicrobial functions hold promise in replacing petroleum-based packaging for food preservation. A nanocellulose-based hybrid film with antimicrobial properties was developed from sugarcane bagasse and nisin. Cellulose nanofibrils (CNFs) were prepared from sugarcane bagasse pulp by mechanical grinding, and mixed with nisin to prepare CNFs/nisin nanohybrid films. The concentration of nisin has a remarkable influence on the mechanical, light transmission, gas barrier, and antimicrobial properties of these films. CNFs/nisin hybrid films with 1920 mg/L nisin exhibit good light transmission, relatively high tensile strength, low oxygen permeability, and low water vapor transmission rates. This hybrid film was used as a liner of low-density polyethylene plastic packaging for ready-to-eat ham; it completely inhibited Listeria monocytogenes during 7 days of storage at 4 °C. Such novel CNFs/nisin nanohybrid films are expected to expand the application of bagasse nanocellulose in active packaging for food preservation.
Collapse
|
18
|
Monjazeb Marvdashti L, Abdulmajid Ayatollahi S, Salehi B, Sharifi‐Rad J, Abdolshahi A, Sharifi‐Rad R, Maggi F. Optimization of edible
Alyssum homalocarpum
seed gum‐chitosan coating formulation to improve the postharvest storage potential and quality of apricot (
Prunus armeniaca
L.). J Food Saf 2020. [DOI: 10.1111/jfs.12805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Leila Monjazeb Marvdashti
- Department of Food Science and Technology, Faculty of AgricultureFerdowsi University of Mashhad (FUM) Mashhad Iran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
- Department of PharmacognosySchool of Pharmacy, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Bahare Salehi
- Student Research CommitteeSchool of Medicine, Bam University of Medical Sciences Bam Iran
| | - Javad Sharifi‐Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Anna Abdolshahi
- Food Safety Research Center (salt)Semnan University of Medical Sciences Semnan Iran
| | - Razieh Sharifi‐Rad
- Zabol Medicinal Plants Research CenterZabol University of Medical Sciences Zabol Iran
| | - Filippo Maggi
- School of Pharmacy, University of Camerino Camerino Italy
| |
Collapse
|
19
|
Zhang P, Zhao Y, Zhang X, Zhu L, Fang Z, Shi Q. Thermodynamic Properties and State Diagram of Gum Ghatti-Based Edible Films: Effects of Glycerol and Nisin. Polymers (Basel) 2020; 12:E449. [PMID: 32074987 PMCID: PMC7077710 DOI: 10.3390/polym12020449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 11/26/2022] Open
Abstract
In this present study, the thermodynamic and thermal properties of glycerol and nisin-incorporated gum ghatti (GG, Anogeissus latifolia)-based films were determined. The films exhibited type III isotherm behaviors. Moisture content (MC) of films was increased with increasing water activity (aw) and decreased with higher temperature. The incorporation of glycerol and nisin increased the sorption ability of GG films. The net isosteric heat of adsorption (qst) and differential entropy (Sd) were decreased with increasing MC, showing an exponential negative correlation between them. Spreading pressure (φ) was increased with increasing aw, but decreased with higher temperature. This incorporation of glycerol and nisin increased the qst, Sd and φ of the GG films. The sorption behaviors were enthalpy-driven and non-spontaneous processes. The glass transition temperature (Tg), critical MC and aw of the films were decreased, and increased respectively with the incorporation of glycerol and nisin. This work provides a theoretical basis for the application of edible films in fresh food preservation.
Collapse
Affiliation(s)
- Pingping Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Xincun West Road, Zibo, Shandong 255000, China
| | - Ya Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Xincun West Road, Zibo, Shandong 255000, China
| | - Xin Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Xincun West Road, Zibo, Shandong 255000, China
| | - Lanlan Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Xincun West Road, Zibo, Shandong 255000, China
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Parkville 3010, Australia
| | - Qilong Shi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Xincun West Road, Zibo, Shandong 255000, China
| |
Collapse
|
20
|
Antilisterial and physical properties of polysaccharide-collagen films embedded with cell-free supernatant of Lactococcus lactis. Int J Biol Macromol 2020; 145:1031-1038. [DOI: 10.1016/j.ijbiomac.2019.09.195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/15/2019] [Accepted: 09/22/2019] [Indexed: 12/20/2022]
|