1
|
Hu W, Ao H, Lv Z, Xiao W, Li W, Lei J, Wu J, Ju H. Glow-type luminol chemiluminescence based on a supramolecular enhancer of cyclodextrin. Anal Chim Acta 2024; 1328:343182. [PMID: 39266198 DOI: 10.1016/j.aca.2024.343182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Chemiluminescence (CL) bioassay is one of the most advanced and used detection method in clinical diagnosis and biomedical research because of the advantages of low background, easy operation, and wide-field imaging without a light source or microscope. The luminol/hydrogen peroxide/horseradish peroxidase (luminol/H2O2/HRP) system is the most popular CL system, but its application in high-throughput imaging detection is challenged due to its low luminescence efficiency and flash-type emission which is difficult in ensuring the reproducibility and consistency of detection results. RESULTS We reported a glow-type CL system of luminol@CD/H2O2/HRP by using a supramolecular enhancer of cyclodextrin (CD). This luminol@CD/H2O2/HRP system exhibited a luminescence lifetime of 41 min for sensitive and accurate imaging analysis. The long-lasting CL emission was attributed to the formation of a 1:1 host-guest complex between luminol and CD, which could stabilize the emitter and effectively reduce nonradiative relaxation. The formation of luminol@CD complex was determined through NMR experiments and theoretical analysis. Under optimum conditions, the luminol@CD/H2O2/HRP system showed higher sensitivity and much better precision than classical luminol/H2O2/HRP system for imaging detection of HRP. Especially, this glow-type luminol@CD/H2O2/HRP system realized CL imaging of microwell arrays on microfluidic chips. In addition, the luminol@CD/H2O2/HRP system was successfully applied for point-of-care detection of 17β-estradiol based on a competitive mechanism of host-guest recognition. SIGNIFICANCE An efficient CL system is crucial for obtaining reproducible and consistent results for accurate detection. Our luminol@CD/H2O2/HRP system emitted strong and persistent luminescence, resulting in reliability and efficiency at both CL macroscopic and microscopic imaging detection. We expected the luminol@CD/H2O2/HRP CL system to be applied in various detection fields.
Collapse
Affiliation(s)
- Wenrui Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hang Ao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ziyi Lv
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wencheng Xiao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Szomek M, Akkerman V, Lauritsen L, Walther HL, Juhl AD, Thaysen K, Egebjerg JM, Covey DF, Lehmann M, Wessig P, Foster AJ, Poolman B, Werner S, Schneider G, Müller P, Wüstner D. Ergosterol promotes aggregation of natamycin in the yeast plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184350. [PMID: 38806103 DOI: 10.1016/j.bbamem.2024.184350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/11/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Polyene macrolides are antifungal substances, which interact with cells in a sterol-dependent manner. While being widely used, their mode of action is poorly understood. Here, we employ ultraviolet-sensitive (UV) microscopy to show that the antifungal polyene natamycin binds to the yeast plasma membrane (PM) and causes permeation of propidium iodide into cells. Right before membrane permeability became compromised, we observed clustering of natamycin in the PM that was independent of PM protein domains. Aggregation of natamycin was paralleled by cell deformation and membrane blebbing as revealed by soft X-ray microscopy. Substituting ergosterol for cholesterol decreased natamycin binding and caused a reduced clustering of natamycin in the PM. Blocking of ergosterol synthesis necessitates sterol import via the ABC transporters Aus1/Pdr11 to ensure natamycin binding. Quantitative imaging of dehydroergosterol (DHE) and cholestatrienol (CTL), two analogues of ergosterol and cholesterol, respectively, revealed a largely homogeneous lateral sterol distribution in the PM, ruling out that natamycin binds to pre-assembled sterol domains. Depletion of sphingolipids using myriocin increased natamycin binding to yeast cells, likely by increasing the ergosterol fraction in the outer PM leaflet. Importantly, binding and membrane aggregation of natamycin was paralleled by a decrease of the dipole potential in the PM, and this effect was enhanced in the presence of myriocin. We conclude that ergosterol promotes binding and aggregation of natamycin in the yeast PM, which can be synergistically enhanced by inhibitors of sphingolipid synthesis.
Collapse
Affiliation(s)
- Maria Szomek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Vibeke Akkerman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Line Lauritsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Hanna-Loisa Walther
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Alice Dupont Juhl
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Katja Thaysen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Jacob Marcus Egebjerg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Douglas F Covey
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA; Taylor Family Institute for Innovative Psychiatric Research, USA
| | - Max Lehmann
- Institute for Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Pablo Wessig
- Institute for Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Alexander J Foster
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 Groningen, the Netherlands
| | - Stephan Werner
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Gerd Schneider
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Peter Müller
- Department of Biology, Humboldt University Berlin, Invalidenstr. 43, D-10115 Berlin, Germany
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| |
Collapse
|
3
|
Abdin M, Naeem MA, Aly-Aldin MM. Enhancing the bioavailability and antioxidant activity of natamycin E235-ferulic acid loaded polyethylene glycol/carboxy methyl cellulose films as anti-microbial packaging for food application. Int J Biol Macromol 2024; 266:131249. [PMID: 38569998 DOI: 10.1016/j.ijbiomac.2024.131249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
This study investigated the development of biodegradable films made from a combination of polyethylene glycol (PEG), carboxymethyl cellulose (CMC) and mixtures from natamycin and ferulic acid. The films were characterized for their surface microstructure, antioxidant activity, thermal stability, mechanical properties, permeability and antifungal/bacterial activity. The addition of natamycin and ferulic acid to the film matrix enhanced antioxidant activity, thermal stability, antimicrobial activity, reduced the water vapor permeability (WVP) to 1.083 × 10-10 g × m-1s-1Pa-1, imparted opaque color and increased opacity up to 3.131 A mm-1. The attendance of natamycin and ferulic acid inside films created a clear roughness shape with agglomerates on the surface of films and caused a clear inhibition zone for Aspergillus niger, E. coli and C. botulinum. The utilization of PG/CMC/N-F packaging material on Ras cheese had a noticeable effect, resulting in a slight decrease in moisture content from 34.23 to 29.17 %. Additionally, it helped maintain the titrable acidity within the range of 0.99 % to 1.11 % and the force required for puncture from 0.035 to 0.052 N with non-significant differences. Importantly, these changes did not significantly affect the sensory qualities of Ras cheese during the storage period.
Collapse
Affiliation(s)
- Mohamed Abdin
- Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt.
| | - Mohamed Ahmed Naeem
- Nutrition and Food Science of Ain Shams University Specialized Hospital, Ain Shams University, Cairo, Egypt
| | - Mohamed M Aly-Aldin
- Department of Food Science and Technology, Faculty of Agriculture, Menoufia University, Shibin El-Kom, Egypt
| |
Collapse
|
4
|
Cai C, Youssef AAA, Joshi PH, Varner C, Dudhipala N, Majumdar S. Improved Topical Ophthalmic Natamycin Suspension for the Treatment of Fungal Keratitis. J Ocul Pharmacol Ther 2024; 40:67-77. [PMID: 38117668 PMCID: PMC10890950 DOI: 10.1089/jop.2023.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/18/2023] [Indexed: 12/22/2023] Open
Abstract
Purpose: Natamycin (NT) is used as a first-line antifungal prescription in the treatment of fungal keratitis (FK) and is commercially available as a 5% w/v ophthalmic suspension. NT shows poor water solubility and light sensitivity. Thus, the present investigation is aimed to enhance the fraction of NT in solution in the commercial formulation by adding cyclodextrins (CDs), thereby improving the delivery of the drug into deeper ocular tissues. Methods: The solubility of NT in different CDs, the impact of ultraviolet (UV) light exposure, stability at 4°C and 25°C, in vitro release, and ex vivo transcorneal permeation studies were performed. Results: NT exhibited the highest solubility (66-fold) in randomly methylated-β-cyclodextrin (RM-βCD) with hydroxypropyl-βCD (HP-βCD) showing the next highest solubility (54-fold) increase in comparison to market formulation Natacyn® as control. The stability of NT-CD solutions was monitored for 2 months (last-time point) at both storage conditions. The degradation profile of NT in NT-RM-βCD and NT-HP-βCD solutions under UV-light exposure followed first-order kinetics exhibiting half-lives of 1.2 h and 1.4 h, respectively, an almost 3-fold increase over the control solutions. In vitro release/diffusion studies revealed that suspensions containing RM-βCD and HP-βCD increased transmembrane flux significantly (3.1-fold) compared to the control group. The transcorneal permeability of NT from NT-RM-βCD suspension exhibited an 8.5-fold (P < 0.05) improvement compared to Natacyn eyedrops. Furthermore, the addition of RM-βCD to NT suspension increases the solubilized fraction of NT and enhances transcorneal permeability. Conclusion: Therefore, NT-RM-βCD formulations could potentially lead to a decreased frequency of administration and significantly improved therapeutic outcomes in FK treatment.
Collapse
Affiliation(s)
- Chuntian Cai
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Poorva H. Joshi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA
| | - Corinne Varner
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA
| | - Narendar Dudhipala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, Mississippi, USA
| |
Collapse
|
5
|
Maddula VR, Dachuru RSR. Enhancement of Valsartan Oral Bioavailability by Preparing a Microwave-Irradiated Inclusion Complex with Sulfobutyl Ether β-Cyclodextrin Using a Central Composite Face Design for Optimising Process Parameters. AAPS PharmSciTech 2023; 24:115. [PMID: 37160765 DOI: 10.1208/s12249-023-02571-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
The purpose of the study is to investigate the influence of sulfobutyl ether β-cyclodextrin (SBE7-β-CD) on the bioavailability of valsartan. Phase solubility investigations showed an AL type curve. The estimated apparent stability constant for valsartan SBE7-β-CD is 427 ± 0.32 M-1. Inclusion complexes of valsartan SBE7-β-CD in equal molar ratio were prepared by microwave irradiation technique. The process parameters were optimised with a central composite face design. Response surface graphs and contour plots showed how process factors affected drug content. The inclusion complexes prepared by optimising process variables are characterised. The DSC and X-ray diffraction confirm the formation of inclusion complexes and the drug's transition from a crystalline to an amorphous state. FTIR suggests hydrogen bonding between valsartan and SBE7-β-CD. SEM showed changes in drug morphology and shape. The dissolution rate of the prepared SBE7-β-CD complex using microwave irradiation was 2.85 times that of pure valsartan. The inclusion complex was formulated into tablet dosage forms F1 to F4. Furthermore, oral bioavailability studies in rats with tablet formulation F3 were carried out and compared to the marketed Diovan® tablet as a reference standard. The F3 tablet formulation exhibited significantly higher values of AUC0-∞ and Cmax than the reference. Finally, the microwave-irradiated valsartan SBE7-β-CD inclusion complex converted into tablet dosage form may be a promising approach to increasing valsartan oral bioavailability.
Collapse
Affiliation(s)
- Venkata Ramana Maddula
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research, Vadlamudi, 522213, Andhra Pradesh, India
- Faculty of Pharmacy, Krishna University, Machilipatnam, 521004, Andhra Pradesh, India
| | | |
Collapse
|
6
|
Xu X, Peng X, Huan C, Chen J, Meng Y, Fang S. Development of natamycin-loaded zein-casein composite nanoparticles by a pH-driven method and application to postharvest fungal control on peach against Monilinia fructicola. Food Chem 2023; 404:134659. [DOI: 10.1016/j.foodchem.2022.134659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/05/2022] [Accepted: 10/15/2022] [Indexed: 11/22/2022]
|
7
|
Szomek M, Reinholdt P, Walther HL, Scheidt HA, Müller P, Obermaier S, Poolman B, Kongsted J, Wüstner D. Natamycin sequesters ergosterol and interferes with substrate transport by the lysine transporter Lyp1 from yeast. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184012. [PMID: 35914570 DOI: 10.1016/j.bbamem.2022.184012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Natamycin is a polyene macrolide, widely employed to treat fungal keratitis and other yeast infections as well as to protect food products against fungal molds. In contrast to other polyene macrolides, such as nystatin or amphotericin B, natamycin does not form pores in yeast membranes, and its mode of action is not well understood. Here, we have employed a variety of spectroscopic methods, computational modeling, and membrane reconstitution to study the molecular interactions of natamycin underlying its antifungal activity. We find that natamycin forms aggregates in an aqueous solution with strongly altered optical properties compared to monomeric natamycin. Interaction of natamycin with model membranes results in a concentration-dependent fluorescence increase which is more pronounced for ergosterol- compared to cholesterol-containing membranes up to 20 mol% sterol. Evidence for formation of specific ergosterol-natamycin complexes in the bilayer is provided. Using nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy, we find that natamycin sequesters sterols, thereby interfering with their well-known ability to order acyl chains in lipid bilayers. This effect is more pronounced for membranes containing the sterol of fungi, ergosterol, compared to those containing mammalian cholesterol. Natamycin interferes with ergosterol-dependent transport of lysine by the yeast transporter Lyp1, which we propose to be due to the sequestering of ergosterol, a mechanism that also affects other plasma membrane proteins. Our results provide a mechanistic explanation for the selective antifungal activity of natamycin, which can set the stage for rational design of novel polyenes in the future.
Collapse
Affiliation(s)
- Maria Szomek
- Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Hanna-Loisa Walther
- Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Peter Müller
- Department of Biology, Humboldt University Berlin, Invalidenstr. 43, 10115 Berlin, Germany
| | - Sebastian Obermaier
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 Groningen, the Netherlands
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark.
| |
Collapse
|
8
|
Wu X, Hu Q, Liang X, Fang S. Fabrication of colloidal stable gliadin-casein nanoparticles for the encapsulation of natamycin: Molecular interactions and antifungal application on cherry tomato. Food Chem 2022; 391:133288. [PMID: 35623282 DOI: 10.1016/j.foodchem.2022.133288] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 11/04/2022]
Abstract
Natamycin was encapsulated in gliadin-casein nanoparticles (G-C NPs) to control black rot in cherry tomato against Alternaria alternata. The G-C NPs with a mean particle diameter of 211 ± 4 nm were prepared using an anti-solvent method. The composite NPs showed better stability against neutral pH, ion, and storage than gliadin NPs. The quenching of gliadin by natamycin was static with a constant of 5.99 × 10-12 M-1∙S-1, and was spontaneous with a free energy of -23.5 kJ∙M-1 at 298 K. Both hydrophobic stacking and hydrogen bonds between natamycin and gliadin were found as the major driven force in the formation of the complex. The NPs kept the antifungal activity of natamycin with improved photostability. The NPs coatings exhibited better results than natamycin in controlling black rot on cherry tomato. This study shows the potential of the G-C NPs as all-natural delivery systems for natamycin in post-harvest treatments.
Collapse
Affiliation(s)
- Xiaochuan Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Qiuyun Hu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Xianrui Liang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
9
|
Immunoassay for Natamycin Trace Screening: Bread, Wine and Other Edibles Analysis. BIOSENSORS 2022; 12:bios12070493. [PMID: 35884296 PMCID: PMC9312873 DOI: 10.3390/bios12070493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
The antifungal drug natamycin (NAT) is widely used in medicine and in the food industry as preservative E235 for a wide variety of foods. The risk of the development of resistance to NAT and its spread in relation to other polyene antibiotics is fraught with the emergence of incurable infections. This work is devoted to the development of an immunoassay to investigate the prevalence of NAT use for food preservation. Two immunogen designs based on tetanus toxoid, conjugated to NAT through different sites of hapten molecules, were compared in antibody generation. Assay formats using heterologous coating antigens were superior for both antibodies. The ELISA variant demonstrated the highest sensitivity (IC50 = 0.12 ng/mL), and a limit of detection of 0.02 ng/mL was selected for NAT determination. The optimized extraction procedure provided a recovery rate of 72–106% for various food matrixes with variations below 12%. Cyclodextrins, as well as NAT–cyclodextrin complex formulations, showed no interference with the quantification of NAT. One hundred and six food product brands, including baked goods, wines, beers, drinks, sauces, and yogurts, were tested to assess the prevalence of the undeclared use of NAT as a preservative. The screening examination revealed three positive yogurts with an undeclared NAT incorporation of 1.1–9.3 mg/kg.
Collapse
|
10
|
Molecular dynamics simulation of the interactions between sesamol and myosin combined with spectroscopy and molecular docking studies. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Sun C, Cao J, Wang Y, Huang L, Chen J, Wu J, Zhang H, Chen Y, Sun C. Preparation and characterization of pectin-based edible coating agent encapsulating carvacrol/HPβCD inclusion complex for inhibiting fungi. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Fang G, Wang Q, Yang X, Qian Y, Zhang G, Tang B. γ-Cyclodextrin-based polypseudorotaxane hydrogels for ophthalmic delivery of flurbiprofen to treat anterior uveitis. Carbohydr Polym 2022; 277:118889. [PMID: 34893291 DOI: 10.1016/j.carbpol.2021.118889] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022]
Abstract
Anterior uveitis is a sight-threatening inflammation inside the eyes. Conventional eye drops for anti-inflammatory therapy need to be administered frequently owing to the rapid elimination and corneal barrier. To address these issues, polypseudorotaxane hydrogels were developed by mixing Soluplus micelles (99.4 nm) and cyclodextrins solution. The optimized hydrogels exhibited shear-thinning and sustained release properties. The hydrogels exhibited higher transcorneal permeability coefficient (Papp, 1.84 folds) than that of drug solutions. Moreover, animal study indicated that the hydrogels significantly increased the precorneal retention (AUC, 21.2 folds) and intraocular bioavailability of flurbiprofen (AUCAqueous humor, 17.8 folds) in comparison with drug solutions. Importantly, the hydrogels obviously boosted anti-inflammatory efficacy in rabbit model of endotoxin-induced uveitis at a reduced administration frequency. Additionally, the safety of hydrogels was confirmed by cytotoxicity and ocular irritation studies. In all, the present study demonstrates a friendly non-invasive strategy based on γ-CD-based polypseudorotaxane hydrogels for ocular drug delivery.
Collapse
Affiliation(s)
- Guihua Fang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Qiuxiang Wang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xuewen Yang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu Qian
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Bo Tang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
13
|
Meena M, Prajapati P, Ravichandran C, Sehrawat R. Natamycin: a natural preservative for food applications-a review. Food Sci Biotechnol 2021; 30:1481-1496. [PMID: 34868698 DOI: 10.1007/s10068-021-00981-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/21/2021] [Accepted: 08/31/2021] [Indexed: 11/26/2022] Open
Abstract
Natamycin is a natural antimicrobial peptide produced by the strains of Streptomyces natalensis. It effectively acts as an antifungal preservative on various food products like yogurt, khoa, sausages, juices, wines, etc. Additionally, it has been used as a bio preservative and is listed as generally recognized as a safe ingredient for various food applications. In this review, natamycin properties, production methods, toxicity, and application as a natural preservative in different foods are emphasized. This review also focuses on optimal condition and process control required in natamycin production. The mode of action and inhibitory effect of natamycin on yeast and molds inhibition and its formulation and dosage to preserve various food products, coating, and hurdle applications are summarized. Understanding the scientific factors in natamycin's production process, its toxicity, and its efficiency as a preservative will open its practical application in various food products. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00981-1.
Collapse
Affiliation(s)
- Mahima Meena
- Institute of Home Economics, University of Delhi, New Delhi, India
| | | | - Chandrakala Ravichandran
- Department of Food Processing Technology, Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, 641114 India
| | - Rachna Sehrawat
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008 India
| |
Collapse
|
14
|
Mazurek AH, Szeleszczuk Ł, Gubica T. Application of Molecular Dynamics Simulations in the Analysis of Cyclodextrin Complexes. Int J Mol Sci 2021; 22:9422. [PMID: 34502331 PMCID: PMC8431145 DOI: 10.3390/ijms22179422] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Cyclodextrins (CDs) are highly respected for their ability to form inclusion complexes via host-guest noncovalent interactions and, thus, ensofance other molecular properties. Various molecular modeling methods have found their applications in the analysis of those complexes. However, as showed in this review, molecular dynamics (MD) simulations could provide the information unobtainable by any other means. It is therefore not surprising that published works on MD simulations used in this field have rapidly increased since the early 2010s. This review provides an overview of the successful applications of MD simulations in the studies on CD complexes. Information that is crucial for MD simulations, such as application of force fields, the length of the simulation, or solvent treatment method, are thoroughly discussed. Therefore, this work can serve as a guide to properly set up such calculations and analyze their results.
Collapse
Affiliation(s)
- Anna Helena Mazurek
- Department of Physical Chemistry, Chair of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Doctoral School, Medical University of Warsaw, Banacha 1 Street, 02-093 Warsaw, Poland;
| | - Łukasz Szeleszczuk
- Department of Physical Chemistry, Chair of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-093 Warsaw, Poland;
| | - Tomasz Gubica
- Department of Physical Chemistry, Chair of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-093 Warsaw, Poland;
| |
Collapse
|
15
|
Wang Y, Deng Z, Wang X, Shi Y, Lu Y, Fang S, Liang X. Formononetin/methyl-β-cyclodextrin inclusion complex incorporated into electrospun polyvinyl-alcohol nanofibers: Enhanced water solubility and oral fast-dissolving property. Int J Pharm 2021; 603:120696. [PMID: 33984451 DOI: 10.1016/j.ijpharm.2021.120696] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022]
Abstract
Improving solubility and administration route of isoflavone formononetin (FMN) are critical factors to improve its bioavailability in the oral cavity. This study fabricated fast-dissolving nanofibers containing FMN/methyl-β-cyclodextrin (FMN/Me-β-CD) inclusion complex. The solubility of FMN could be increased by approximately 50 times at 20 mM aqueous Me-β-CD. Interactions and thermodynamic parameters of the host-guest inclusion complex were studied by a fluorescence quenching method. The structure and mechanisms of the complex were further studied by molecular docking and molecular dynamics. Finally, polyvinyl-alcohol (PVA) nanofibrous webs containing the FMN/Me-β-CD inclusion complex were fabricated by electrospinning. The dissolution test demonstrated that the FMN/Me-β-CD/PVA nanofibers can be dissolved in artificial saliva within approximately 2 s. This study shows the potential of Me-β-CD inclusion and electrospinning to improve solubility and administration route of isoflavones.
Collapse
Affiliation(s)
- Yeli Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou 310018, China
| | - Zian Deng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou 310018, China
| | - Xinmiao Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou 310018, China
| | - Yugang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou 310018, China
| | - Ying Lu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou 310018, China
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou 310018, China.
| | - Xianrui Liang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
16
|
Zeng Y, Wang Y, Liang Z, Jiao Z. The study of chiral recognition on ibuprofen enantiomers by a fluorescent probe based on β-cyclodextrin modified ZnS:Mn quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119002. [PMID: 33035885 DOI: 10.1016/j.saa.2020.119002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
In this paper, a fluorescence method for chiral detection of ibuprofen and its enantiomer was developed. The L-cystenine-capped ZnS:Mn quantum dots were synthesized and functionalized with β-cyclodextrin (β-CD-QDs). The β-CD-QDs exhibited different quenching effect to the S-(+)-ibuprofen and the R-(-)-ibuprofen based on the advantage of the inclusion complex of cyclodextrin. It was found that the quenching of β-CD-QDs by S-(+)-ibuprofen was due to the formation of inclusion complex through both static quenching and photoinduced electron transfer, but only slight quenching with the R-(-)-ibuprofen. The stability constants derived from Hildebrand-Benesi method and absorption titration experiments were applied to determine the stability constants of the formed complexes, the double reciprocal plots suggest that a conclusion complex with a ratio of 1:1 was formed between β-CD-QDs and S-(+)-ibuprofen, but did not with the R-(-)-ibuprofen. The fluorescence intensity of the β-CD-QDs was linearly dependent on the concentration of the S-(+)-IBP in the range of 0-0.5 nmol/L with an limit of detection of 0.29 nmol/L.
Collapse
Affiliation(s)
- Yanyan Zeng
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yueting Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhihui Liang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhe Jiao
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|