1
|
Chen S, Song S, Tan Y, He S, Ren X, Li Z, Liu Y. Optimization of ultrasonic-assisted debittering of Ganoderma lucidum using response surface methodology, characterization, and evaluation of antioxidant activity. PeerJ 2024; 12:e17943. [PMID: 39421421 PMCID: PMC11485051 DOI: 10.7717/peerj.17943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 10/19/2024] Open
Abstract
Background Ganoderma lucidum (G. lucidum) has gained increasing attention as a potential health care product and food source. However, the bitter taste of G. lucidum has limited its development and utilization for the food industry. Methonds The response surface methodology was employed to optimize the inclusion conditions for the debittering of G. lucidum. The effects of 2-hydroxypropyl-β-cyclodextrin concentration (12-14 g/mL), ultrasound temperature (20-40 °C and host-guest ratio (1:1-2:1) on response variables were studied. The physical characteristics of inclusion complexes prepared through spray drying and freeze drying were analyzed. The antioxidant activity of the different treated samples was subsequently investigated. Results Study results showed that, in comparison to the control group, the inclusion solution displayed a significantly enhanced taste profile under optimal processing conditions, exhibiting an 80.74% reduction in bitterness value. Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (NMR) studies indicated the successful formation of inclusion compounds. The moisture content and bulk density of spray-dried powder were found to be significantly superior to those of freeze-dried powder (p < 0.05). In comparison to the diluted solution, the inclusion liquid demonstrated a 20.27%, 30.01% and 36.55% increase in ferric ion reducing antioxidant power (FRAP), hydroxyl radical scavenging and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging respectively. Further, the DPPH clearance of microencapsulated powder was not significantly different from that of tocopherol at a concentration of 25 mg/mL. Conclusions In summary, the study provides theoretical basis and methodological guidance to eliminate the bitterness of G. lucidum, and therefore provide potential options to the use of G. lucidum as a food source.
Collapse
Affiliation(s)
- Shuting Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Shiying Song
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Yumei Tan
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Shengling He
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Xiyi Ren
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
| | - Yongxiang Liu
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| |
Collapse
|
2
|
Xiao Z, Yu P, Sun P, Kang Y, Niu Y, She Y, Zhao D. Inclusion complexes of β-cyclodextrin with isomeric ester aroma compounds: Preparation, characterization, mechanism study, and controlled release. Carbohydr Polym 2024; 333:121977. [PMID: 38494230 DOI: 10.1016/j.carbpol.2024.121977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Cyclodextrins (CDs) have been discovered to provide an efficient solution to the limited application of ester aroma molecules used in food, tobacco, and medication due to their strong smell and unstable storage. This work combined molecular modeling and experimental to analyze the conformation and controlled release of isomeric ester aroma compounds/β-CD inclusion complexes (ICs). The investigation revealed that ester aroma compounds could be effectively encapsulated within the β-CD cavity, forming ICs with low binding affinity. Furthermore, the key driving forces in ICs were identified as hydrogen bonds and van der Waals interactions through theoretical simulation. Results from the Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and Isothermal titration calorimetry (ITC) experiments confirmed the intermolecular interaction predicted by the molecular model. Notably, the release rate of aroma compounds from L-menthyl acetate/β-CD (LMA/β-CD) IC exceeded that of terpinyl acetate/β-CD (TA/β-CD) IC. This difference is attributed to the length of the chain of aroma molecules and the variation in the position of functional groups, influencing the stable formation of ICs with β-CD. These findings hold potential implications for refining the application of ICs across diverse industries.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Peiran Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
3
|
Rana N, Singh SK, Banu NA, Hjazi A, Vamanu E, Singh MP. The Ethnopharmacological Properties of Green-Engineered Metallic Nanoparticles against Metabolic Disorders. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1022. [PMID: 37374226 DOI: 10.3390/medicina59061022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Metabolic syndrome is a multifaceted pathophysiologic condition that is largely caused by an imbalance between caloric intake and energy expenditure. The pathogenesis of metabolic syndrome is determined by an individual's genetic/epigenetics and acquired factors. Natural compounds, notably plant extracts, have antioxidant, anti-inflammatory, and insulin-sensitizing properties and are considered to be a viable option for metabolic disorder treatment due to their low risk of side effects. However, the limited solubility, low bioavailability, and instability of these botanicals hinder their performance. These specific limitations have prompted the need for an efficient system that reduces drug degradation and loss, eliminates unwanted side effects, and boosts drug bioavailability, as well as the percentage of the drug deposited in the target areas. The quest for an enhanced (effective) drug delivery system has led to the formation of green-engineered nanoparticles, which has increased the bioavailability, biodistribution, solubility, and stability of plant-based products. The unification of plant extracts and metallic nanoparticles has helped in the development of new therapeutics against metabolic disorders such as obesity, diabetes mellitus, neurodegenerative disorders, non-alcoholic fatty liver, and cancer. The present review outlines the pathophysiology of metabolic diseases and their cures with plant-based nanomedicine.
Collapse
Affiliation(s)
- Neha Rana
- School of Bioengineering and Biosciences, Lovely Professional University, Delhi-Jalandhar Highway, Phagwara 144411, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Najitha A Banu
- School of Bioengineering and Biosciences, Lovely Professional University, Delhi-Jalandhar Highway, Phagwara 144411, India
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Adulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| | - Mahendra P Singh
- Department of Zoology, DDU Gorakhpur University, Gorakhpur 273009, India
- Centre of Genomics and Bioinformatics, DDU Gorakhpur University, Gorakhpur 273009, India
| |
Collapse
|
4
|
Preparation and Characterization of Tea Tree Oil-β-Cyclodextrin Microcapsules with Super-High Encapsulation Efficiency. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2023. [DOI: 10.1016/j.jobab.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
5
|
Loading of fish oil into β-cyclodextrin nanocomplexes for the production of a functional yogurt. Food Chem X 2022; 15:100406. [PMID: 36211775 PMCID: PMC9532799 DOI: 10.1016/j.fochx.2022.100406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
The main limitation of adding fish oil into food products is its instability and oxidation. It leads to the production of improper aroma, unpleasant odor/taste of final product. β-cyclodextrin (BCD) inclusion complexes were applied for encapsulation of fish oil. Physicochemical properties of produced yogurt were investigated during storage at 4 °C. Adding encapsulated fish oil into yogurt gave closer properties to control sample.
Omega-3 fatty acids play a role in achieving optimal health and in protection against diseases. Although instability and oxidation of its essential fatty acids has limited its use in food products. Among the strategies used to prevent these challenges, the encapsulation technique has been the most successful method. Therefore, in this study, β-cyclodextrin (BCD) inclusion complexes were applied for encapsulation of fish oil and its addition into yogurt for fortification. Physicochemical properties of produced yogurt as well as sensory tests were investigated during 21 days of storage at 4 °C. The results showed that encapsulation of fish oil with BCD significantly reduced the acidity, peroxide value, and syneresis of yogurt while increasing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). In conclusion, the results demonstrated that yoghurt fortified with encapsulated fish oil has similar sensory qualities to the control sample than yoghurt fortified with free fish oil.
Collapse
|
6
|
Carboxymethyl chitosan-based electrospun nanofibers with high citral-loading for potential anti-infection wound dressings. Int J Biol Macromol 2022; 209:344-355. [PMID: 35413309 DOI: 10.1016/j.ijbiomac.2022.04.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022]
Abstract
As a natural antibacterial agent with pleasant fragrance, citral possesses low aqueous solubility. To improve citral loading in hydrophilic nanofiber, Pickering emulsion electrospinning strategy was proposed for anti-infection dressing development. The in-situ aggerated β-cyclodextrin-citral inclusion complex particles (βCPs) were used as emulsion stabilizers, while citral and carboxymethyl chitosan (CMCS)/polyvinyl alcohol (PVA) mixed solutions were used as the inner "dispersed oil phase" and outer "continuous water phase", respectively. The results of electronic microscope investigation shown βCPs possessed regular cube appearances with a size of 5.5 ± 2.2 μm, which might improve the emulsion storage stability based on visual investigation. Moreover, randomly oriented and bead-on-string nanofibers with βCPs uniformly distributed could be obtained under optimized compositions and electrospinning parameters. Despite volatilization during electrospinning, nanofibers with high citral loading possessed good antibacterial performance against Staphylococcus aureus and Escherichia coli. In vitro hemolysis test indicated that nanofibers were hemocompatible. In addition, both fiber matrix and citral could promote the proliferation of mouse fibroblast cells. And the permeability of the fibers was adjustable. Thus, CMCS/PVA/βCPs/citral nanofibers could potentially protect wound from infection. In summary, CMCS/PVA/βCPs/citral nanofibers seemed to be promising alternatives to conventional wound dressings.
Collapse
|
7
|
Sha H, Cui B, Yuan C, Li Y, Guo L, Liu P, Wu Z. Catechin/β-cyclodextrin complex modulates physicochemical properties of pre-gelatinized starch-based orally disintegrating films. Int J Biol Macromol 2022; 195:124-131. [PMID: 34896463 DOI: 10.1016/j.ijbiomac.2021.11.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022]
Abstract
The study aimed to develop pre-gelatinized starch-based orally disintegrating films (ODFs) containing catechin/β-cyclodextrin (CAT/β-CD) complex and to evaluate the influence of the complex on the physicochemical properties of the ODFs. SEM images showed that a compacter and more homogeneous ODFs were formed due to interactions between starch matrix and CAT/β-CD. FTIR spectra demonstrated that the interactions between starches or starch and CAT/β-CD were enhanced by hydrogen bonds. Thermal stability of ODFs was improved by incorporating CAT/β-CD, its peak decomposition temperature was enhanced from 310.74 to 321.83 °C. Tensile strength was increased from 11.597 ± 0.153 to 22.172 ± 0.752 MPa, while elongation at break decreased by from 11.233% ± 1.079% to 3.633% ± 0.058%. The prepared ODFs have an acceptable in vitro disintegration time, which were between 9.03 ± 0.79 s and 42.23 ± 1.76 s. Antimicrobial test showed that ODFs incorporating CAT/β-CD inhibited the growth of S. aureus and S. mutans successfully. The limited release of CAT molecules from the ODFs was also found. In addition, the ODFs have excellent antioxidant capacity. Its antioxidant activity remained at around 70% after 28 days of storage. The study indicated that the combination of ODFs and β-CD complex have a high potential for the delivery of natural active ingredients.
Collapse
Affiliation(s)
- Haojie Sha
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Yuhang Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|