1
|
Xu Q, Liang J, Jin J, Wu W, Ren J, Ruan J, Fan L, Yuan W, Cai J, Lin Q, Xiang B, Ding C, Ren T, Chen L. Newcastle disease virus nucleocapsid protein mediates the degradation of 14-3-3ε to antagonize the interferon response and promote viral replication. Vet Microbiol 2023; 284:109851. [PMID: 37598526 DOI: 10.1016/j.vetmic.2023.109851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
Newcastle disease virus (NDV) is responsible for outbreaks that pose a threat to the global poultry industry. NDV triggers an interferon (IFN) response in the host upon infection. However, it also employs mechanisms that counteract this response. One important component in IFN-related signaling pathways is 14-3-3ε, which is known to interact with retinoic acid-inducible gene I (RIG-I) and mitochondrial antiviral signaling protein (MAVS). The relationship between 14 and 3-3ε and NDV infection has not been previously explored; therefore, this study aimed to investigate this relationship in vivo and in vitro using overexpressed and knockdown 14-3-3ε experiments, along with co-immunoprecipitation analysis. We found that NDV infection led to the degradation of 14-3-3ε. Furthermore, 14-3-3ε inhibited the replication of NDV, suggesting that NDV may enhance its own replication by promoting the degradation of 14-3-3ε during infection. The study revealed that 14-3-3ε is degraded by lysosomes and the viral protein nucleocapsid protein (NP) of NDV induces this degradation. It was also observed that 14-3-3ε is involved in activating the IFN pathway during NDV infection and mediates the binding of MDA5 to MAVS. Our study reveals that NDV NP mediates the entry of 14-3-3ε into lysosomes and facilitates its degradation. These findings contribute to the existing knowledge on the molecular mechanisms employed by NDV to counteract the IFN response and enhance its own replication.
Collapse
Affiliation(s)
- Qiufan Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jianpeng Liang
- Moganshan Institute Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jiaqi Jin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Wanyan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinlian Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jiayu Ruan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Lei Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Weifeng Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Juncheng Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Chan Ding
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.
| |
Collapse
|
2
|
Abstract
Major advances in pathogen identification, treatment, vaccine development, and avian immunology have enabled the enormous expansion in global poultry production over the last 50 years. Looking forward, climate change, reduced feed, reduced water access, new avian pathogens and restrictions on the use of antimicrobials threaten to hamper further gains in poultry productivity and health. The development of novel in vitro cell culture systems, coupled with new genetic tools to investigate gene function, will aid in developing novel interventions for existing and newly emerging poultry pathogens. Our growing capacity to cryopreserve and generate genome-edited chicken lines will also be useful for developing improved chicken breeds for poultry farmers and conserving chicken genetic resources.
Collapse
Affiliation(s)
- Euan Mitchell
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Guillermo Tellez
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Mike J McGrew
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|