1
|
Leavenworth JD, Yusuf N, Hassan Q. K-Homology Type Splicing Regulatory Protein: Mechanism of Action in Cancer and Immune Disorders. Crit Rev Eukaryot Gene Expr 2024; 34:75-87. [PMID: 37824394 PMCID: PMC11003564 DOI: 10.1615/critreveukaryotgeneexpr.2023048085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
K homology-type splicing regulatory protein (KSRP) is emerging as a key player in cancer biology, and immunology. As a single-strand nucleic acid binding protein it functions in both transcriptional and post-transcriptional regulation, while facilitating multiple stages of RNA metabolism to affect proliferation and control cell fate. However, it must interact with other proteins to determine the fate of its bound substrate. Here we provide an minireview of this important regulatory protein and describe its complex subcellular functions to affect RNA metabolism, stability, miRNA biogenesis and maturation, stress granule function, metastasis, and inflammatory processes.
Collapse
Affiliation(s)
- Jonathan D. Leavenworth
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nabiha Yusuf
- Department of Dermatology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Quamarul Hassan
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
2
|
Gonzalez E, Flatt TG, Farooqi M, Johnson L, Ahmed AA. Polypyrimidine Tract Binding Protein: A Universal Player in Cancer Development. Curr Mol Med 2024; 24:1450-1460. [PMID: 37877563 DOI: 10.2174/0115665240251370231017053236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVES Polypyrimidine tract binding protein is a 57-Kda protein located in the perinucleolar compartment where it binds RNA and regulates several biological functions through the regulation of RNA splicing. Numerous research articles have been published that address the cellular network and functions of PTB and its isoforms in various disease states. METHODOLOGY Through an extensive PubMed search, we attempt to summarize the relevant research into this biomolecule. RESULTS Besides its roles in embryonic development, neuronal cell growth, RNA metabolism, apoptosis, and hematopoiesis, PTB can affect cancer growth via several metabolic, proliferative, and structural mechanisms. PTB overexpression has been documented in several cancers where it plays a role as a novel prognostic factor. CONCLUSION The diverse carcinogenic effect opens an argument into its potential role in inhibitory targeted therapy.
Collapse
Affiliation(s)
- Elizabeth Gonzalez
- Pediatric Hematology Oncology, Children Mercy Hospital, Kansas City, Missouri, USA
| | - Terrie G Flatt
- Pediatric Hematology Oncology, Children Mercy Hospital, Kansas City, Missouri, USA
| | - Midhat Farooqi
- Departments of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Lisa Johnson
- Pathology and Laboratory Medicine, Seattle Children's Hospital/University of Washington, Seattle, Washington, USA
| | - Atif A Ahmed
- Pathology and Laboratory Medicine, Seattle Children's Hospital/University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Gonzalez E, Ahmed AA, McCarthy L, Chastain K, Habeebu S, Zapata-Tarres M, Cardenas-Cardos R, Velasco-Hidalgo L, Corcuera-Delgado C, Rodriguez-Jurado R, García-Rodríguez L, Parrales A, Iwakuma T, Farooqi MS, Lee B, Weir SJ, Flatt TG. Perinucleolar Compartment (PNC) Prevalence as an Independent Prognostic Factor in Pediatric Ewing Sarcoma: A Multi-Institutional Study. Cancers (Basel) 2023; 15:cancers15082230. [PMID: 37190159 DOI: 10.3390/cancers15082230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
The perinucleolar compartment (PNC) is a small nuclear body that plays important role in tumorigenesis. PNC prevalence correlates with poor prognosis and cancer metastasis. Its expression in pediatric Ewing sarcoma (EWS) has not previously been documented. In this study, we analyzed 40 EWS tumor cases from Caucasian and Hispanic patients for PNC prevalence by immunohistochemical detection of polypyrimidine tract binding protein and correlated the prevalence with dysregulated microRNA profiles. EWS cases showed staining ranging from 0 to 100%, which were categorized as diffuse (≥77%, n = 9, high PNC) or not diffuse (<77%, n = 31) for low PNC. High PNC prevalence was significantly higher in Hispanic patients from the US (n = 6, p = 0.017) and in patients who relapsed with metastatic disease (n = 4; p = 0.011). High PNC was associated with significantly shorter disease-free survival and early recurrence compared to those with low PNC. Using NanoString digital profiling, high PNC tumors revealed upregulation of eight and downregulation of 18 microRNAs. Of these, miR-320d and miR-29c-3p had the most significant differential expression in tumors with high PNC. In conclusion, this is the first study that demonstrates the presence of PNC in EWS, reflecting its utility as a predictive biomarker associated with tumor metastasis, specific microRNA profile, Hispanic ethnic origin, and poor prognosis.
Collapse
Affiliation(s)
- Elizabeth Gonzalez
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico
| | - Atif A Ahmed
- Department of Pathology, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Laura McCarthy
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Katherine Chastain
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Sahibu Habeebu
- Department of Pathology & Laboratory Medicine, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Marta Zapata-Tarres
- Research Coordination Mexican Institute of Social Security Foundation, Mexico City 06600, Mexico
| | - Rocio Cardenas-Cardos
- Departamento de Oncología Pediátrica, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Liliana Velasco-Hidalgo
- Departamento de Oncología Pediátrica, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Celso Corcuera-Delgado
- Departamento de Patología Pediátrica, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Rodolfo Rodriguez-Jurado
- Departamento de Patología Pediátrica, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | | | - Alejandro Parrales
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Tomoo Iwakuma
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Midhat S Farooqi
- Department of Pathology & Laboratory Medicine, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Brian Lee
- Department of Health Services and Outcomes Research, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Scott J Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Institute for Advancing Medical Innovation, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Terrie G Flatt
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
4
|
Bourdi M, Rudloff U, Patnaik S, Marugan J, Terse PS. Safety assessment of metarrestin in dogs: A clinical candidate targeting a subnuclear structure unique to metastatic cancer cells. Regul Toxicol Pharmacol 2020; 116:104716. [PMID: 32619635 PMCID: PMC8378239 DOI: 10.1016/j.yrtph.2020.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/09/2020] [Accepted: 06/16/2020] [Indexed: 11/28/2022]
Abstract
Pancreatic cancer is a leading cause of cancer-related deaths in the U.S. Ninety percent of patients with stage IV pancreatic cancer die within one year of diagnosis due to complications of metastasis. A metastatic potential of cancer cells has been shown to be closely associated with formation of perinucleolar compartment (PNC). Metarrestin, a first-in-class PNC inhibitor, was evaluated for its toxicity, toxicokinetics, and safety pharmacology in beagle dogs following every other day oral (capsule) administration for 28 days to support its introduction into clinical trials. The study consisted of four dose groups: vehicle; 0.25, 0.75 and 1.50 mg/kg/dose. Metarrestin reached its maximum concentration in blood at 3 h (overall median Tmax) across all doses with a mean t1/2 over 168 h of 55.5 h. Dose dependent increase in systemic exposure (Cmax and AUClast) with no sex difference was observed on days 1 and 27. Metarrestin accumulated from Day 1 to Day 27 at all dose levels and in both sexes by an overall factor of about 2.34. No mortality occurred during the dosing period; however, treatment-related clinical signs of toxicity consisting of hypoactivity, shaking/shivering, thinness, irritability, salivation, abnormal gait, tremors, ataxia and intermittent seizure-like activity were seen in both sexes at mid and high dose groups. Treatment-related effects on body weight and food consumption were seen at the mid and high dose levels. Safety pharmacology study showed no treatment-related effects on blood pressure, heart rate, corrected QT, PR, RR, or QRS intervals, or respiratory function parameters (respiratory rate, tidal volume, minute volume). There were no histopathological changes observed, with the exception of transient thymic atrophy which was considered to be non-adverse. Based primarily on clinical signs of toxicity, the No Observed Adverse Effect Level (NOAEL) in dogs was considered to be 0.25 mg/kg metarrestin after every other day dosing for 28 days with a mean of male and female Cmax = 82.5 ng/mL and AUClast = 2521 h*ng/mL, on Day 27.
Collapse
Affiliation(s)
- Mohammed Bourdi
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA
| | - Udo Rudloff
- Rare Tumor Initiative, Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA
| | - Juan Marugan
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA
| | - Pramod S Terse
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA.
| |
Collapse
|
5
|
Kanis MJ, Qiang W, Pineda M, Maniar KP, Kim JJ. A small molecule inhibitor of the perinucleolar compartment, ML246, attenuates growth and spread of ovarian cancer. GYNECOLOGIC ONCOLOGY RESEARCH AND PRACTICE 2018; 5:7. [PMID: 30305911 PMCID: PMC6167785 DOI: 10.1186/s40661-018-0064-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/20/2018] [Indexed: 11/12/2022]
Abstract
BACKGROUND Ovarian cancer remains a major health problem for women as it is often diagnosed at a late stage with metastatic disease. There are limited therapeutic agents and survival rates remain poor. The perinucleolar compartment (PNC) has been shown to be associated with malignancy and is considered a surrogate phenotypic marker for metastatic cancer cells. A small molecule, ML246, was derived from a screen against PNCs. In this study, the effect of ML246 on ovarian cancer growth and spread was investigated. METHODS SKOV3 or OVCAR3 cells were treated with ML246 in vitro and PNC was visualized with immunofluorescent staining. Cell invasion was assessed using Matrigel-coated transwell systems. SKOV3 cells were xenografted orthotopically under the ovarian bursa of immunocompromised mice. Additionally, a patient derived ovarian cancer cell line was grafted subcutaneously. Mice were treated with ML246 and tumor growth and spread was assessed. RESULTS PNCs were prevalent in the ovarian cancer cell lines OVCAR3 and SKOV3 with higher prevalence in OVCAR3 cells. Treatment with ML246 significantly reduced PNC prevalence in OVCAR3 and SKOV3 cells. Moreover, the invasive activity of both cell lines was significantly inhibited in vitro. Orthotopic implantation of SKOV3 cells resulted in growth of the tumor on the ovary as well as spread of tumor tissues outside of the primary site on organs into the abdominal cavity. Treatment with ML246 decreased the incidence of tumors outside of the ovary. In addition, a patient-derived xenograft (PDX) line was grafted subcutaneously to monitor tumor growth. ML246 significantly attenuated growth of tumors over a 5-week treatment period. CONCLUSIONS PNC's are present in ovarian cancer cells and treatment with ML246 decreases invasion in vitro and tumor growth and spread in vivo. Additional studies are warranted to determine the efficacy of ML246 as an inhibitor of metastatic disease in ovarian cancer and to determine its precise mechanism of action.
Collapse
Affiliation(s)
- Margaux J. Kanis
- Division of Gynecology Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Wenan Qiang
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Mario Pineda
- Division of Gynecology Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Kruti P. Maniar
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - J. Julie Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 E. Superior Street, 4-117, Chicago, IL 60611 USA
| |
Collapse
|
6
|
Abstract
The nucleolus as site of ribosome biogenesis holds a pivotal role in cell metabolism. It is composed of ribosomal DNA (rDNA), which is present as tandem arrays located in nucleolus organizer regions (NORs). In interphase cells, rDNA can be found inside and adjacent to nucleoli and the location is indicative for transcriptional activity of ribosomal genes-inactive rDNA (outside) versus active one (inside). Moreover, the nucleolus itself acts as a spatial organizer of non-nucleolar chromatin. Microscopy-based approaches offer the possibility to explore the spatially distinct localization of the different DNA populations in relation to the nucleolar structure. Recent technical developments in microscopy and preparatory methods may further our understanding of the functional architecture of nucleoli. This review will attempt to summarize the current understanding of mammalian nucleolar chromatin organization as seen from a microscopist's perspective.
Collapse
Affiliation(s)
- Christian Schöfer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria.
| | - Klara Weipoltshammer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| |
Collapse
|
7
|
Hall LL, Byron M, Carone DM, Whitfield TW, Pouliot GP, Fischer A, Jones P, Lawrence JB. Demethylated HSATII DNA and HSATII RNA Foci Sequester PRC1 and MeCP2 into Cancer-Specific Nuclear Bodies. Cell Rep 2017; 18:2943-2956. [PMID: 28329686 DOI: 10.1016/j.celrep.2017.02.072] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/03/2017] [Accepted: 02/23/2017] [Indexed: 02/05/2023] Open
Abstract
This study reveals that high-copy satellite II (HSATII) sequences in the human genome can bind and impact distribution of chromatin regulatory proteins and that this goes awry in cancer. In many cancers, master regulatory proteins form two types of cancer-specific nuclear bodies, caused by locus-specific deregulation of HSATII. DNA demethylation at the 1q12 mega-satellite, common in cancer, causes PRC1 aggregation into prominent Cancer-Associated Polycomb (CAP) bodies. These loci remain silent, whereas HSATII loci with reduced PRC1 become derepressed, reflecting imbalanced distribution of UbH2A on these and other PcG-regulated loci. Large nuclear foci of HSATII RNA form and sequester copious MeCP2 into Cancer-Associated Satellite Transcript (CAST) bodies. Hence, HSATII DNA and RNA have an exceptional capacity to act as molecular sponges and sequester chromatin regulatory proteins into abnormal nuclear bodies in cancer. The compartmentalization of regulatory proteins within nuclear structure, triggered by demethylation of "junk" repeats, raises the possibility that this contributes to further compromise of the epigenome and neoplastic progression.
Collapse
Affiliation(s)
- Lisa L Hall
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Meg Byron
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Dawn M Carone
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Troy W Whitfield
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Gayle P Pouliot
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Andrew Fischer
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Peter Jones
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jeanne B Lawrence
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
8
|
Stępiński D. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways. Histochem Cell Biol 2016; 146:119-39. [PMID: 27142852 DOI: 10.1007/s00418-016-1443-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 12/12/2022]
Abstract
Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.
Collapse
Affiliation(s)
- Dariusz Stępiński
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| |
Collapse
|