1
|
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 2020; 160:105069. [PMID: 32652198 DOI: 10.1016/j.phrs.2020.105069] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder associated with the loss of sensory and motor function. Understanding the precise dysregulated signaling pathways, especially apoptosis and autophagy following SCI, is of vital importance in developing innovative therapeutic targets and treatments. The present study lies in the fact that it reveals the precise dysregulated signaling mediators of apoptotic and autophagic pathways following SCI and also examines the effects of polyphenols and other candidate phytochemicals. It provides new insights to develop new treatments for post-SCI complications. Accordingly, a comprehensive review was conducted using electronic databases including, Scopus, Web of Science, PubMed, and Medline, along with the authors' expertise in apoptosis and autophagy as well as their knowledge about the effects of polyphenols and other phytochemicals on SCI pathogenesis. The primary mechanical injury to spinal cord is followed by a secondary cascade of apoptosis and autophagy that play critical roles during SCI. In terms of pharmacological mechanisms, caspases, Bax/Bcl-2, TNF-α, and JAK/STAT in apoptosis along with LC3 and Beclin-1 in autophagy have shown a close interconnection with the inflammatory pathways mainly glutamatergic, PI3K/Akt/mTOR, ERK/MAPK, and other cross-linked mediators. Besides, apoptotic pathways have been shown to regulate autophagy mediators and vice versa. Prevailing evidence has highlighted the importance of modulating these signaling mediators/pathways by polyphenols and other candidate phytochemicals post-SCI. The present review provides dysregulated signaling mediators and therapeutic targets of apoptotic and autophagic pathways following SCI, focusing on the modulatory effects of polyphenols and other potential phytochemical candidates.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
2
|
Knockout of ALOX12 protects against spinal cord injury-mediated nerve injury by inhibition of inflammation and apoptosis. Biochem Biophys Res Commun 2019; 516:991-998. [PMID: 31277941 DOI: 10.1016/j.bbrc.2019.06.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022]
Abstract
Spinal cord injury (SCI) is terrible damage leading to the deficiencies and results in infinite inconvenience to sufferers. The effective treatment for SCI still meets a larger number of problems. Herein, the underlying molecular mechanism and novel therapy of SCI are urgently to investigate. Arachidonate 12-lipoxygenase (ALOX12) is widely expressed in various cell types and plays important role in modulating different cellular processes, such as platelet aggregation, cell migration and cancer cell proliferation. Nevertheless, the effects of ALOX12 on SCI are unclear. In the study, SCI model was established in wild type (WT) mice and ALOX12 knockout mice. First, ALOX12 expression was up-regulated in spinal cord tissues of WT mice after SCI. ALOX12-knockout mice exhibited improved behavior after SCI operation. Glial activation triggered by SCI was also alleviated in mice with the loss of ALOX12, as evidenced by the down-regulated expression of glial fibrillary acidic protein (GFAP) and Iba-1 in spinal cord samples. Further, SCI-induced inflammation was markedly prevented in ALOX12-knockout mice through blocking inhibitor of NF-κB α (IκBα)/nuclear factor-κB (NF-κB) pathway signaling. Additionally, reducing ALOX12 expression attenuated apoptosis in spinal cord tissues of SCI mice by decreasing Cyto-c, cleaved Caspase-3 and poly (ADP-ribose) polymerases (PARP) expression. The protective role of ALOX12-decrease against SCI was verified in LPS-incubated glial cells through repressing inflammatory response and apoptotic formation. Moreover, transgenic mice with ALOX12 over-expression showed accelerated SCI, associated with intensified inflammation and apoptosis. Based on these results, strategies for inhibiting ALOX12 could be used to prevent SCI development by repressing inflammation and apoptosis.
Collapse
|
3
|
Zhang Y, Liu NM, Wang Y, Youn JY, Cai H. Endothelial cell calpain as a critical modulator of angiogenesis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1326-1335. [PMID: 28366876 DOI: 10.1016/j.bbadis.2017.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/04/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Calpains are a family of calcium-dependent non-lysosomal cysteine proteases. In particular, calpains residing in the endothelial cells play important roles in angiogenesis. It has been shown that calpain activity can be increased in endothelial cells by growth factors, primarily vascular endothelial growth factor (VEGF). VEGF/VEGFR2 induces calpain 2 dependent activation of PI3K/AMPK/Akt/eNOS pathway, and consequent nitric oxide production and physiological angiogenesis. Under pathological conditions such as tumor angiogenesis, endothelial calpains can be activated by hypoxia. This review focuses on the molecular regulatory mechanisms of calpain activation, and the newly identified mechanistic roles and downstream signaling events of calpains in physiological angiogenesis, and in the conditions of pathological tumor angiogenesis and diabetic wound healing, as well as retinopathy and atherosclerosis that are also associated with an increase in calpain activity. Further discussed include the differential strategies of modulating angiogenesis through manipulating calpain expression/activity in different pathological settings. Targeted limitation of angiogenesis in cancer and targeted promotion of angiogenesis in diabetic wound healing via modulations of calpains and calpain-dependent signaling mechanisms are of significant translational potential. Emerging strategies of tissue-specific targeting, environment-dependent targeting, and genome-targeted editing may turn out to be effective regimens for targeted manipulation of angiogenesis through calpain pathways, for differential treatments including both attenuation of tumor angiogenesis and potentiation of diabetic angiogenesis.
Collapse
Affiliation(s)
- Yixuan Zhang
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA
| | - Norika Mengchia Liu
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA
| | - Yongchen Wang
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA
| | - Ji Youn Youn
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA
| | - Hua Cai
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA.
| |
Collapse
|