1
|
Park C, Jung S, Park H. Single vesicle tracking for studying synaptic vesicle dynamics in small central synapses. Curr Opin Neurobiol 2022; 76:102596. [PMID: 35803103 DOI: 10.1016/j.conb.2022.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
Abstract
Sustained neurotransmission is driven by a continuous supply of synaptic vesicles to the release sites and modulated by synaptic vesicle dynamics. However, synaptic vesicle dynamics in synapses remain elusive because of technical limitations. Recent advances in fluorescence imaging techniques have enabled the tracking of single synaptic vesicles in small central synapses in living neurons. Single vesicle tracking has uncovered a wealth of new information about synaptic vesicle dynamics both within and outside presynaptic terminals, showing that single vesicle tracking is an effective tool for studying synaptic vesicle dynamics. Particularly, single vesicle tracking with high spatiotemporal resolution has revealed the dependence of synaptic vesicle dynamics on the location, stages of recycling, and neuronal activity. This review summarizes the recent findings from single synaptic vesicle tracking in small central synapses and their implications in synaptic transmission and pathogenic mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chungwon Park
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 11 Biopolis Way, 138667, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong; Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong.
| |
Collapse
|
2
|
Real-time three-dimensional tracking of single vesicles reveals abnormal motion and pools of synaptic vesicles in neurons of Huntington's disease mice. iScience 2021; 24:103181. [PMID: 34703988 PMCID: PMC8521108 DOI: 10.1016/j.isci.2021.103181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/30/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
Although defective synaptic transmission was suggested to play a role in neurodegenerative diseases, the dynamics and vesicle pools of synaptic vesicles during neurodegeneration remain elusive. Here, we performed real-time three-dimensional tracking of single synaptic vesicles in cortical neurons from a mouse model of Huntington's disease (HD). Vesicles in HD neurons had a larger net displacement and radius of gyration compared with wild-type neurons. Vesicles with high release probability (Pr) were interspersed with low-Pr vesicles in HD neurons, whereas high-Pr vesicles were closer to fusion sites than low-Pr in wild-type neurons. Non-releasing vesicles in HD neurons had an abnormally high prevalence of irregular oscillatory motion. These abnormal dynamics and vesicle pools were rescued by overexpressing Rab11, and the abnormal irregular oscillatory motion was rescued by jasplakinolide. Our studies reveal the abnormal dynamics and pools of synaptic vesicles in the early stages of HD, suggesting a possible pathogenic mechanism of neurodegenerative diseases.
Collapse
|
3
|
Chen X, Liu T, Qin X, Nguyen QQ, Lee SK, Lee C, Ren Y, Chu J, Zhu G, Yoon TY, Park CY, Park H. Simultaneous Real-Time Three-Dimensional Localization and FRET Measurement of Two Distinct Particles. NANO LETTERS 2021; 21:7479-7485. [PMID: 34491760 DOI: 10.1021/acs.nanolett.1c01328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many biological processes employ mechanisms involving the locations and interactions of multiple components. Given that most biological processes occur in three dimensions, the simultaneous measurement of three-dimensional locations and interactions is necessary. However, the simultaneous three-dimensional precise localization and measurement of interactions in real time remains challenging. Here, we report a new microscopy technique to localize two spectrally distinct particles in three dimensions with an accuracy (2.35σ) of tens of nanometers with an exposure time of 100 ms and to measure their real-time interactions using fluorescence resonance energy transfer (FRET) simultaneously. Using this microscope, we tracked two distinct vesicles containing t-SNAREs or v-SNARE in three dimensions and observed FRET simultaneously during single-vesicle fusion in real time, revealing the nanoscale motion and interactions of single vesicles in vesicle fusion. Thus, this study demonstrates that our microscope can provide detailed information about real-time three-dimensional nanoscale locations, motion, and interactions in biological processes.
Collapse
Affiliation(s)
- Xingxiang Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Teng Liu
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xianan Qin
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Quang Quan Nguyen
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Sang Kwon Lee
- Department of Biological Sciences, School of Life Sciences, UNIST, 44919, Ulsan, Republic of Korea
| | - Chanwoo Lee
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Yaguang Ren
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jun Chu
- Research Lab for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guang Zhu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Tae-Young Yoon
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Chan Young Park
- Department of Biological Sciences, School of Life Sciences, UNIST, 44919, Ulsan, Republic of Korea
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
4
|
Unique dynamics and exocytosis properties of GABAergic synaptic vesicles revealed by three-dimensional single vesicle tracking. Proc Natl Acad Sci U S A 2021; 118:2022133118. [PMID: 33622785 DOI: 10.1073/pnas.2022133118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Maintaining the balance between neuronal excitation and inhibition is essential for proper function of the central nervous system. Inhibitory synaptic transmission plays an important role in maintaining this balance. Although inhibitory transmission has higher kinetic demands compared to excitatory transmission, its properties are poorly understood. In particular, the dynamics and exocytosis of single inhibitory vesicles have not been investigated, due largely to both technical and practical limitations. Using a combination of quantum dots (QDs) conjugated to antibodies against the luminal domain of the vesicular GABA transporter to selectively label GABAergic (i.e., predominantly inhibitory) vesicles together with dual-focus imaging optics, we tracked the real-time three-dimensional position of single GABAergic vesicles up to the moment of exocytosis (i.e., fusion). Using three-dimensional trajectories, we found that GABAergic synaptic vesicles traveled a shorter distance prior to fusion and had a shorter time to fusion compared to synaptotagmin-1 (Syt1)-labeled vesicles, which were mostly from excitatory neurons. Moreover, our analysis revealed that GABAergic synaptic vesicles move more straightly to their release sites than Syt1-labeled vesicles. Finally, we found that GABAergic vesicles have a higher prevalence of kiss-and-run fusion than Syt1-labeled vesicles. These results indicate that inhibitory synaptic vesicles have a unique set of dynamics and exocytosis properties to support rapid synaptic inhibition, thereby maintaining a tightly regulated coordination between excitation and inhibition in the central nervous system.
Collapse
|
5
|
Qin X, Tsien RW, Park H. Real-time three-dimensional tracking of single synaptic vesicles reveals that synaptic vesicles undergoing kiss-and-run fusion remain close to their original fusion site before reuse. Biochem Biophys Res Commun 2019; 514:1004-1008. [PMID: 31092326 DOI: 10.1016/j.bbrc.2019.05.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 01/10/2023]
Abstract
The release of neurotransmitters via the fusion between synaptic vesicles and the presynaptic membrane is an essential step in synaptic transmission. Synaptic vesicles generally undergo two distinct modes of exocytosis called full-collapse fusion and kiss-and-run fusion. In kiss-and-run fusion, the fusion pore of the synaptic vesicle opens transiently without the vesicle collapsing fully into the plasma membrane; thus, each synaptic vesicle can be used multiple times to release neurotransmitters. Despite considerable research, the detailed mechanisms that underlie kiss-and-run fusion remain elusive, particularly the location of synaptic vesicles after kiss-and-run events. To address this question, we performed real-time three-dimensional tracking of single synaptic vesicles labeled with a single quantum dot in the presynaptic terminal of cultured hippocampal neurons and analyzed the three-dimensional trajectories of these vesicles undergoing kiss-and-run fusion. We found that the majority of these synaptic vesicles underwent another exocytosis event within 120 nm of their original fusion site and underwent a second exocytosis event within 10 s of the first fusion event. These results indicate that after kiss-and-run fusion, synaptic vesicles remain relatively close to their original fusion site and can release repeatedly at brief intervals, allowing neurons to maintain neurotransmitter release during bursting activity.
Collapse
Affiliation(s)
- Xianan Qin
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Richard W Tsien
- NYU Neuroscience Institute and Department of Physiology and Neuroscience, New York University, New York, NY, 10016, USA
| | - Hyokeun Park
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
6
|
Chen S, Yu C, Rong L, Li CH, Qin X, Ryu H, Park H. Altered Synaptic Vesicle Release and Ca 2+ Influx at Single Presynaptic Terminals of Cortical Neurons in a Knock-in Mouse Model of Huntington's Disease. Front Mol Neurosci 2018; 11:478. [PMID: 30618623 PMCID: PMC6311661 DOI: 10.3389/fnmol.2018.00478] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the abnormal expansion of CAG repeats in the huntingtin (HTT) gene, which leads to progressive loss of neurons starting in the striatum and cortex. One possible mechanism for this selective loss of neurons in the early stage of HD is altered neurotransmission at synapses. Despite the recent finding that presynaptic terminals play an important role in HD, neurotransmitter release at synapses in HD remains poorly understood. Here, we measured synaptic vesicle release in real time at single presynaptic terminals during electrical field stimulation. We found the increase in synaptic vesicle release at presynaptic terminals in primary cortical neurons in a knock-in mouse model of HD (zQ175). We also found the increase in Ca2+ influx at presynaptic terminals in HD neurons during the electrical stimulation. Consistent with increased Ca2+-dependent neurotransmission in HD neurons, the increase in vesicle release and Ca2+ influx was rescued with Ca2+ chelators or by blocking N-type voltage-gated Ca2+ channels, suggesting N-type voltage-gated Ca2+ channels play an important role in HD. Taken together, our results suggest that the increased synaptic vesicles release due to increased Ca2+ influx at presynaptic terminals in cortical neurons contributes to the selective neurodegeneration of these neurons in early HD and provide a possible therapeutic target.
Collapse
Affiliation(s)
- Sidong Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Chenglong Yu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Li Rong
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Chun Hei Li
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Xianan Qin
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Hoon Ryu
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
7
|
Yu C, Li CH, Chen S, Yoo H, Qin X, Park H. Decreased BDNF Release in Cortical Neurons of a Knock-in Mouse Model of Huntington's Disease. Sci Rep 2018; 8:16976. [PMID: 30451892 PMCID: PMC6242964 DOI: 10.1038/s41598-018-34883-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/27/2018] [Indexed: 01/18/2023] Open
Abstract
Huntington’s disease (HD) is a dominantly inherited neurodegenerative disease caused by an increase in CAG repeats in the Huntingtin gene (HTT). The striatum is one of the most vulnerable brain regions in HD, and altered delivery of BDNF to the striatum is believed to underlie this high vulnerability. However, the delivery of BDNF to the striatum in HD remains poorly understood. Here, we used real-time imaging to visualize release of BDNF from cortical neurons cultured alone or co-cultured with striatal neurons. BDNF release was significantly decreased in the cortical neurons of zQ175 mice (a knock-in model of HD), and total internal reflection fluorescence microscopy revealed several release patterns of single BDNF-containing vesicles, with distinct kinetics and prevalence, in co-cultured cortical HD neurons. Notably, a smaller proportion of single BDNF-containing vesicles underwent full release in HD neurons than in wild-type neurons. This decreased release of BDNF in cortical neurons might lead to decreased BDNF levels in the striatum because the striatum receives BDNF mainly from the cortex. In addition, we observed a decrease in the total travel length and speed of BDNF-containing vesicles in HD neurons, indicating altered transport of these vesicles in HD. Our findings suggest a potential mechanism for the vulnerability of striatal neurons in HD and offer new insights into the pathogenic mechanisms underlying the degeneration of neurons in HD.
Collapse
Affiliation(s)
- Chenglong Yu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chun Hei Li
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Sidong Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hanna Yoo
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xianan Qin
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. .,Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. .,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
8
|
Alsina A, Lai WM, Wong WK, Qin X, Zhang M, Park H. Real-time subpixel-accuracy tracking of single mitochondria in neurons reveals heterogeneous mitochondrial motion. Biochem Biophys Res Commun 2017; 493:776-782. [DOI: 10.1016/j.bbrc.2017.08.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/25/2017] [Indexed: 11/30/2022]
|