Coccarelli A, Hasan HM, Carson J, Parthimos D, Nithiarasu P. Influence of ageing on human body blood flow and heat transfer: A detailed computational modelling study.
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018;
34:e3120. [PMID:
29932495 PMCID:
PMC6220937 DOI:
10.1002/cnm.3120]
[Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/04/2018] [Accepted: 06/13/2018] [Indexed: 05/17/2023]
Abstract
Ageing plays a fundamental role in arterial blood transport and heat transfer within a human body. The aim of this work is to provide a comprehensive methodology, based on biomechanical considerations, for modelling arterial flow and energy exchange mechanisms in the body accounting for age-induced changes. The study outlines a framework for age-related modifications within several interlinked subsystems, which include arterial stiffening, heart contractility variations, tissue volume and property changes, and thermoregulatory system deterioration. Some of the proposed age-dependent governing equations are directly extrapolated from experimental data sets. The computational framework is demonstrated through numerical experiments, which show the impact of such age-related changes on arterial blood pressure, local temperature distribution, and global body thermal response. The proposed numerical experiments show that the age-related changes in arterial convection do not significantly affect the tissue temperature distribution. Results also highlight age-related effects on the sweating mechanism, which lead to a significant reduction in heat dissipation and a subsequent rise in skin and core temperatures.
Collapse