1
|
Gefferie SR, Ossenblok PPW, Dietze CS, Sargsyan A, Bourez-Swart M, van den Maagdenberg AMJM, Thijs RD. Detection of short-lasting and ictal spike-and-wave discharges in around-the-ears EEG recordings in children with absence epilepsy. Epilepsy Res 2024; 204:107385. [PMID: 38851173 DOI: 10.1016/j.eplepsyres.2024.107385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
PURPOSE Long-term ambulatory EEG recordings can improve the monitoring of absence epilepsy in children, but signal quality and increased review workload are a concern. We evaluated the feasibility of around-the-ears EEG arrays (cEEGrids) to capture 3-Hz short-lasting and ictal spike-and-wave discharges and assessed the performance of automated detection software in cEEGrids data. We compared patterns of bilateral synchronisation between short-lasting and ictal spike-and-wave discharges. METHODS We recruited children with suspected generalised epilepsy undergoing routine video-EEG monitoring and performed simultaneous cEEGrids recordings. We used ASSYST software to detect short-lasting 3-Hz spike-and-wave discharges (1-3 s) and ictal spike-and-wave discharges in the cEEGrids data. We assessed data quality and sensitivity of cEEGrids for spike-and-wave discharges in routine EEG. We determined the sensitivity and false detection rate for automated spike-and-wave discharge detection in cEEGrids data. We compared bihemispheric synchrony across the onset of short-lasting and ictal spike-and-wave discharges using the mean phase coherence in the 2-4 Hz frequency band. RESULTS We included nine children with absence epilepsy (median age = 11 y, range 8-15 y, nine females) and recorded 4 h and 27 min of cEEGrids data. The recordings from seven participants were suitable for quantitative analysis, containing 82 spike-and-wave discharges. The cEEGrids captured 58 % of all spike-and-wave discharges (median individual sensitivity: 100 %, range: 47-100 %). ASSYST detected 82 % of all spike-and-wave discharges (median: 100 %, range: 41-100 %) with a false detection rate of 48/h (median: 6/h, range: 0-154/h). The mean phase coherence significantly increased during short-lasting and ictal spike-and-wave discharges in the 500-ms pre-onset to 1-s post-onset interval. CONCLUSIONS cEEGrids are of variable quality for monitoring spike-and-wave discharges in children with absence epilepsy. ASSYST could facilitate the detection of short-lasting and ictal spike-and-wave discharges with clear periodic structures but with low specificity. A similar course of bihemispheric synchrony between short-lasting and ictal spike-and-wave discharges indicates that cortico-thalamic driving may be relevant for both types of spike-and-wave discharges.
Collapse
Affiliation(s)
- Silvano R Gefferie
- Department of Clinical Neurophysiology (location Zwolle & Heemstede), Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, Heemstede, SW 2103, the Netherlands; Department of Neurology, Leiden University Medical Centre, Albinusdreef 2, Leiden, RC 2300, the Netherlands
| | - Pauly P W Ossenblok
- Department of Clinical Neurophysiology (location Zwolle & Heemstede), Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, Heemstede, SW 2103, the Netherlands; Clinical Neuro-Science projects, De Wittenkade 283, Amsterdam, DD 1052, the Netherlands
| | - Christoph S Dietze
- Department of Clinical Neurophysiology (location Zwolle & Heemstede), Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, Heemstede, SW 2103, the Netherlands
| | - Armen Sargsyan
- Orbeli Institute of Physiology, 22 Orbeli Bros. str 0028, Yerevan, Armenia; Kaoskey Pty. Ltd., Unit 6, 3 Central Ave, Sydney, Australia
| | - Mireille Bourez-Swart
- Department of Clinical Neurophysiology (location Zwolle & Heemstede), Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, Heemstede, SW 2103, the Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Centre, Albinusdreef 2, Leiden, RC 2300, the Netherlands; Department of Human Genetics, Leiden University Medical Centre, Albinusdreef 2, Leiden, RC 2300, the Netherlands
| | - Roland D Thijs
- Department of Clinical Neurophysiology (location Zwolle & Heemstede), Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, Heemstede, SW 2103, the Netherlands; Department of Neurology, Leiden University Medical Centre, Albinusdreef 2, Leiden, RC 2300, the Netherlands; Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, United Kingdom.
| |
Collapse
|
2
|
Pitetzis D, Frantzidis C, Psoma E, Ketseridou SN, Deretzi G, Kalogera-Fountzila A, Bamidis PD, Spilioti M. The Pre-Interictal Network State in Idiopathic Generalized Epilepsies. Brain Sci 2023; 13:1671. [PMID: 38137119 PMCID: PMC10741409 DOI: 10.3390/brainsci13121671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Generalized spike wave discharges (GSWDs) are the typical electroencephalographic findings of Idiopathic Generalized Epilepsies (IGEs). These discharges are either interictal or ictal and recent evidence suggests differences in their pathogenesis. The aim of this study is to investigate, through functional connectivity analysis, the pre-interictal network state in IGEs, which precedes the formation of the interictal GSWDs. A high-density electroencephalogram (HD-EEG) was recorded in twenty-one patients with IGEs, and cortical connectivity was analyzed based on lagged coherence and individual anatomy. Graph theory analysis was used to estimate network features, assessed using the characteristic path length and clustering coefficient. The functional connectivity analysis identified two distinct networks during the pre-interictal state. These networks exhibited reversed connectivity attributes, reflecting synchronized activity at 3-4 Hz (delta2), and desynchronized activity at 8-10.5 Hz (alpha1). The delta2 network exhibited a statistically significant (p < 0.001) decrease in characteristic path length and an increase in the mean clustering coefficient. In contrast, the alpha1 network showed opposite trends in these features. The nodes influencing this state were primarily localized in the default mode network (DMN), dorsal attention network (DAN), visual network (VIS), and thalami. In conclusion, the coupling of two networks defined the pre-interictal state in IGEs. This state might be considered as a favorable condition for the generation of interictal GSWDs.
Collapse
Affiliation(s)
- Dimitrios Pitetzis
- Department of Neurology, Papageorgiou General Hospital, 56403 Thessaloniki, Greece;
- Lab of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.F.); (S.N.K.); (P.D.B.)
| | - Christos Frantzidis
- Lab of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.F.); (S.N.K.); (P.D.B.)
- School of Computer Science, University of Lincoln, Lincoln LN6 7TS, UK
| | - Elizabeth Psoma
- Department of Radiology, AHEPA General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.P.); (A.K.-F.)
| | - Smaranda Nafsika Ketseridou
- Lab of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.F.); (S.N.K.); (P.D.B.)
| | - Georgia Deretzi
- Department of Neurology, Papageorgiou General Hospital, 56403 Thessaloniki, Greece;
| | - Anna Kalogera-Fountzila
- Department of Radiology, AHEPA General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.P.); (A.K.-F.)
| | - Panagiotis D. Bamidis
- Lab of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.F.); (S.N.K.); (P.D.B.)
| | - Martha Spilioti
- 1st Department of Neurology, AHEPA General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| |
Collapse
|
3
|
Sun F, Wang S, Wang Y, Sun J, Li Y, Li Y, Xu Y, Wang X. Differences in generation and maintenance between ictal and interictal generalized spike-and-wave discharges in childhood absence epilepsy: A magnetoencephalography study. Epilepsy Behav 2023; 148:109440. [PMID: 37748416 DOI: 10.1016/j.yebeh.2023.109440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE Childhood absence epilepsy (CAE) is characterized by impaired consciousness and distinct electroencephalogram (EEG) patterns. However, interictal epileptiform discharges (IEDs) do not lead to noticeable symptoms. This study examines the disparity between ictal and interictal generalized spike-and-wave discharges (GSWDs) to determine the mechanisms behind CAE and consciousness. METHODS We enrolled 24 patients with ictal and interictal GSWDs in the study. The magnetoencephalography (MEG) data were recorded before and during GSWDs at a sampling rate of 6000 Hz and analyzed across six frequency bands. The absolute and relative spectral power were estimated with the Minimum Norm Estimate (MNE) combined with the Welch technique. All the statistical analyses were performed using paired-sample tests. RESULTS During GSWDs, the right lateral occipital cortex indicated a significant difference in the theta band (5-7 Hz) with stronger power (P = 0.027). The interictal group possessed stronger spectral power in the delta band (P < 0.01) and weaker power in the alpha band (P < 0.01) as early as 10 s before GSWDs in absolute and relative spectral power. Additionally, the ictal group revealed enhanced spectral power inside the occipital cortex in the alpha band and stronger spectral power in the right frontal regions within beta (15-29 Hz), gamma 1 (30-59 Hz), and gamma 2 (60-90 Hz) bands. CONCLUSIONS GSWDs seem to change gradually, with local neural activity changing even 10 s before discharge. During GSWDs, visual afferent stimulus insensitivity could be related to the impaired response state in CAE. The inhibitory signal in the low-frequency band can shorten GSWD duration, thereby achieving seizure control through inhibitory effect strengthening.
Collapse
Affiliation(s)
- Fangling Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Siyi Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yingfan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yihan Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yanzhang Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Vataman A, Ciolac D, Chiosa V, Aftene D, Leahu P, Winter Y, Groppa SA, Gonzalez-Escamilla G, Muthuraman M, Groppa S. Dynamic flexibility and controllability of network communities in juvenile myoclonic epilepsy. Neurobiol Dis 2023; 179:106055. [PMID: 36849015 DOI: 10.1016/j.nbd.2023.106055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
Juvenile myoclonic epilepsy (JME) is the most common syndrome within the idiopathic generalized epilepsy spectrum, manifested by myoclonic and generalized tonic-clonic seizures and spike-and-wave discharges (SWDs) on electroencephalography (EEG). Currently, the pathophysiological concepts addressing SWD generation in JME are still incomplete. In this work, we characterize the temporal and spatial organization of functional networks and their dynamic properties as derived from high-density EEG (hdEEG) recordings and MRI in 40 JME patients (25.4 ± 7.6 years, 25 females). The adopted approach allows for the construction of a precise dynamic model of ictal transformation in JME at the cortical and deep brain nuclei source levels. We implement Louvain algorithm to attribute brain regions with similar topological properties to modules during separate time windows before and during SWD generation. Afterwards, we quantify how modular assignments evolve and steer through different states towards the ictal state by measuring characteristics of flexibility and controllability. We find antagonistic dynamics of flexibility and controllability within network modules as they evolve towards and undergo ictal transformation. Prior to SWD generation, we observe concomitantly increasing flexibility (F(1,39) = 25.3, corrected p < 0.001) and decreasing controllability (F(1,39) = 55.3, p < 0.001) within the fronto-parietal module in γ-band. On a step further, during interictal SWDs as compared to preceding time windows, we notice decreasing flexibility (F(1,39) = 11.9, p < 0.001) and increasing controllability (F(1,39) = 10.1, p < 0.001) within the fronto-temporal module in γ-band. During ictal SWDs as compared to prior time windows, we demonstrate significantly decreasing flexibility (F(1,14) = 31.6; p < 0.001) and increasing controllability (F(1,14) = 44.7, p < 0.001) within the basal ganglia module. Furthermore, we show that flexibility and controllability within the fronto-temporal module of the interictal SWDs relate to seizure frequency and cognitive performance in JME patients. Our results demonstrate that detection of network modules and quantification of their dynamic properties is relevant to track the generation of SWDs. The observed flexibility and controllability dynamics reflect the reorganization of de-/synchronized connections and the ability of evolving network modules to reach a seizure-free state, respectively. These findings may advance the elaboration of network-based biomarkers and more targeted therapeutic neuromodulatory approaches in JME.
Collapse
Affiliation(s)
- Anatolie Vataman
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldavia
| | - Dumitru Ciolac
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldavia
| | - Vitalie Chiosa
- Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldavia
| | - Daniela Aftene
- Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldavia
| | - Pavel Leahu
- Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldavia
| | - Yaroslav Winter
- Mainz Comprehensive Epilepsy and Sleep Medicine Center, Department of Neurology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stanislav A Groppa
- Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldavia
| | - Gabriel Gonzalez-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
5
|
Sysoeva MV, Kuznetsova GD, Sysoev IV, Ngomba RT, Vinogradova LV, Grishchenko AA, van Rijn CM, van Luijtelaar G. NETWORK ANALYSIS REVEALS A ROLE OF THE HIPPOCAMPUS IN ABSENCE SEIZURES: THE EFFECTS OF A CANNABINOID AGONIST. Epilepsy Res 2023; 192:107135. [PMID: 37023553 DOI: 10.1016/j.eplepsyres.2023.107135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/27/2023] [Accepted: 03/30/2023] [Indexed: 04/04/2023]
Abstract
The role of the hippocampus (Hp) in absence epileptic networks and the effect of endocannabinoid system on this network remain enigmatic. Here, using adapted nonlinear Granger causality, we compared the differences in network strength in four intervals (baseline or interictal, preictal, ictal and postictal) in two hours before (Epoch 1) and six hours (epochs 2, 3 and 4) after the administration of three different doses of the endocannabinoid agonist WIN55,212-2 (WIN) or solvent. Local field potentials were recorded for eight hours in 23 WAG/Rij rats in the Frontal (FC), Parietal PC), Occipital Cortex (OC) and in the hippocampus (Hp). The four intervals were visually marked by an expert neurophysiologist and the strength of couplings between electrode pairs were calculated in both directions. Ictally, a strong decrease in coupling strength was found between Hp and FC, as well as a large increase bidirectionally between PC and FC and unidirectionally from FC and PC to OC, and from FC to Hp over all epochs. The highest dose of WIN increased the couplings strength from FC to Hp and from OC to PC during 4 and 2 hr respectively in all intervals, and decreased the FC to PC coupling strength postictally in epoch 2. A single rat showed generalized convulsive seizures after the highest dose: this rat shared not only coupling changes with the other rats in the same condition, but showed many more. WIN reduced SWD number in epoch 2 and 3, their mean duration increased in epochs 3 and 4. Conclusions:during SWDs FC and PC are strongly coupled and drive OC, while at the same time the influence of Hp to FC is diminished. The first is in agreement with the cortical focus theory, the latter demonstrates an involvement of the hippocampus in SWD occurrence and that ictally the hippocampal control of the cortico-thalamo-cortical system is lost. WIN causes dramatic network changes which have major consequences for the decrease of SWDs, the occurrence of convulsive seizures, and the normal cortico-cortical and cortico-hippocampal interactions.
Collapse
|
6
|
Beamforming Seizures from the Temporal Lobe Using Magnetoencephalography. Can J Neurol Sci 2023; 50:201-213. [PMID: 35022091 DOI: 10.1017/cjn.2022.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Surgical treatment of drug-resistant temporal lobe epilepsy (TLE) depends on proper identification of the seizure onset zone (SOZ) and differentiation of mesial, temporolimbic seizure onsets from temporal neocortical seizure onsets. Noninvasive source imaging using electroencephalography (EEG) and magnetoencephalography (MEG) can provide accurate information on interictal spike localization; however, EEG and MEG have low sensitivity for epileptiform activity restricted to deep temporolimbic structures. Moreover, in mesial temporal lobe epilepsy (MTLE), interictal spikes frequently arise in neocortical foci distant from the SOZ, rendering interictal spike localization potentially misleading for presurgical planning. METHODS In this study, we used two different beamformer techniques applied to the MEG signal of ictal events acquired during EEG-MEG recordings in six patients with TLE (three neocortical, three MTLE) in whom the ictal source localization results could be compared to ground truth SOZ localizations determined from intracranial EEG and/or clinical, neuroimaging, and postsurgical outcome evidence. RESULTS Beamformer analysis proved to be highly accurate in all cases and was able to identify focal SOZs in mesial, temporolimbic structures. In three patients, interictal spikes were absent, too complex for dipole modeling, or localized to anterolateral temporal neocortex distant to a mesial temporal SOZ, and thus unhelpful in presurgical investigation. CONCLUSIONS MEG beamformer source reconstruction is suitable for analysis of ictal events in TLE and can complement or supersede the traditional analysis of interictal spikes. The method outlined is applicable to any type of epileptiform event, expanding the information value of MEG and broadening its utility for presurgical recording in epilepsy.
Collapse
|
7
|
Sarkisova K, van Luijtelaar G. The impact of early-life environment on absence epilepsy and neuropsychiatric comorbidities. IBRO Neurosci Rep 2022; 13:436-468. [PMID: 36386598 PMCID: PMC9649966 DOI: 10.1016/j.ibneur.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
This review discusses the long-term effects of early-life environment on epileptogenesis, epilepsy, and neuropsychiatric comorbidities with an emphasis on the absence epilepsy. The WAG/Rij rat strain is a well-validated genetic model of absence epilepsy with mild depression-like (dysthymia) comorbidity. Although pathologic phenotype in WAG/Rij rats is genetically determined, convincing evidence presented in this review suggests that the absence epilepsy and depression-like comorbidity in WAG/Rij rats may be governed by early-life events, such as prenatal drug exposure, early-life stress, neonatal maternal separation, neonatal handling, maternal care, environmental enrichment, neonatal sensory impairments, neonatal tactile stimulation, and maternal diet. The data, as presented here, indicate that some early environmental events can promote and accelerate the development of absence seizures and their neuropsychiatric comorbidities, while others may exert anti-epileptogenic and disease-modifying effects. The early environment can lead to phenotypic alterations in offspring due to epigenetic modifications of gene expression, which may have maladaptive consequences or represent a therapeutic value. Targeting DNA methylation with a maternal methyl-enriched diet during the perinatal period appears to be a new preventive epigenetic anti-absence therapy. A number of caveats related to the maternal methyl-enriched diet and prospects for future research are discussed.
Collapse
Affiliation(s)
- Karine Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova str. 5a, Moscow 117485, Russia
| | - Gilles van Luijtelaar
- Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognition, Radboud University, Nijmegen, PO Box 9104, 6500 HE Nijmegen, the Netherlands
| |
Collapse
|
8
|
Zhong L, Wan J, Wu J, He S, Zhong X, Huang Z, Li Z. Temporal and spatial dynamic propagation of electroencephalogram by combining power spectral and synchronization in childhood absence epilepsy. Front Neuroinform 2022; 16:962466. [PMID: 36059863 PMCID: PMC9433125 DOI: 10.3389/fninf.2022.962466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Objective During the transition from normal to seizure and then to termination, electroencephalography (EEG) signals have complex changes in time-frequency-spatial characteristics. The quantitative analysis of EEG characteristics and the exploration of their dynamic propagation in this paper would help to provide new biomarkers for distinguishing between pre-ictal and inter-ictal states and to better understand the seizure mechanisms. Methods Thirty-three children with absence epilepsy were investigated with EEG signals. Power spectral and synchronization were combined to provide the time-frequency-spatial characteristics of EEG and analyze the spatial distribution and propagation of EEG in the brain with topographic maps. To understand the mechanism of spatial-temporal evolution, we compared inter-ictal, pre-ictal, and ictal states in EEG power spectral and synchronization network and its rhythms in each frequency band. Results Power, frequency, and spatial synchronization are all enhanced during the absence seizures to jointly dominate the epilepsy process. We confirmed that a rapid diffusion at the onset accompanied by the frontal region predominance exists. The EEG power rapidly bursts in 2–4 Hz through the whole brain within a few seconds after the onset. This spatiotemporal evolution is associated with spatial diffusion and brain regions interaction, with a similar pattern, increasing first and then decreasing, in both the diffusion of the EEG power and the connectivity of the brain network during the childhood absence epilepsy (CAE) seizures. Compared with the inter-ictal group, we observed increases in power of delta and theta rhythms in the pre-ictal group (P < 0.05). Meanwhile, the synchronization of delta rhythm decreased while that of alpha rhythm enhanced. Conclusion The initiation and propagation of CAE seizures are related to the abnormal discharge diffusion and the synchronization network. During the seizures, brain activity is completely changed with the main component delta rhythm. Furthermore, this article demonstrated for the first time that alpha inhibition, which is consistent with the brain’s feedback regulation mechanism, is caused by the enhancement of the network connection. Temporal and spatial evolution of EEG is of great significance for the transmission mechanism, clinical diagnosis and automatic detection of absence epilepsy seizures.
Collapse
Affiliation(s)
- Lisha Zhong
- School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| | - Jiangzhong Wan
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| | - Jia Wu
- School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| | - Suling He
- School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xuefei Zhong
- Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiwei Huang
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, China
| | - Zhangyong Li
- School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
- *Correspondence: Zhangyong Li,
| |
Collapse
|
9
|
Aung T, Tenney JR, Bagić AI. Contributions of Magnetoencephalography to Understanding Mechanisms of Generalized Epilepsies: Blurring the Boundary Between Focal and Generalized Epilepsies? Front Neurol 2022; 13:831546. [PMID: 35572923 PMCID: PMC9092024 DOI: 10.3389/fneur.2022.831546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/08/2022] [Indexed: 12/31/2022] Open
Abstract
According to the latest operational 2017 ILAE classification of epileptic seizures, the generalized epileptic seizure is still conceptualized as "originating at some point within and rapidly engaging, bilaterally distributed networks." In contrast, the focal epileptic seizure is defined as "originating within networks limited to one hemisphere." Hence, one of the main concepts of "generalized" and "focal" epilepsy comes from EEG descriptions before the era of source localization, and a presumed simultaneous bilateral onset and bi-synchrony of epileptiform discharges remains a hallmark for generalized seizures. Current literature on the pathophysiology of generalized epilepsy supports the concept of a cortical epileptogenic focus triggering rapidly generalized epileptic discharges involving intact corticothalamic and corticocortical networks, known as the cortical focus theory. Likewise, focal epilepsy with rich connectivity can give rise to generalized spike and wave discharges resulting from widespread bilateral synchronization. Therefore, making this key distinction between generalized and focal epilepsy may be challenging in some cases, and for the first time, a combined generalized and focal epilepsy is categorized in the 2017 ILAE classification. Nevertheless, treatment options, such as the choice of antiseizure medications or surgical treatment, are the reason behind the importance of accurate epilepsy classification. Over the past several decades, plentiful scientific research on the pathophysiology of generalized epilepsy has been conducted using non-invasive neuroimaging and postprocessing of the electromagnetic neural signal by measuring the spatiotemporal and interhemispheric latency of bi-synchronous or generalized epileptiform discharges as well as network analysis to identify diagnostic and prognostic biomarkers for accurate diagnosis of the two major types of epilepsy. Among all the advanced techniques, magnetoencephalography (MEG) and multiple other methods provide excellent temporal and spatial resolution, inherently suited to analyzing and visualizing the propagation of generalized EEG activities. This article aims to provide a comprehensive literature review of recent innovations in MEG methodology using source localization and network analysis techniques that contributed to the literature of idiopathic generalized epilepsy in terms of pathophysiology and clinical prognosis, thus further blurring the boundary between focal and generalized epilepsy.
Collapse
Affiliation(s)
- Thandar Aung
- Department of Neurology, University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Jeffrey R. Tenney
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Anto I. Bagić
- Department of Neurology, University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| |
Collapse
|
10
|
The role of thalamic nuclei in genetic generalized epilepsies. Epilepsy Res 2022; 182:106918. [DOI: 10.1016/j.eplepsyres.2022.106918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 01/10/2023]
|
11
|
Gouveia FV, Germann J, Oliveira CC, Castro MC, Antunes GF, Gomes GCV, Pinto TRC, Martinez RCR, Valle AC. Transcranial Direct Current Stimulation Reduces Anxiety, Depression and Plasmatic Corticosterone in a Rat Model of Atypical Generalized Epilepsy. Neuroscience 2021; 480:32-41. [PMID: 34774711 DOI: 10.1016/j.neuroscience.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
Affective disorders (i.e. anxiety and depression) are commonly observed in patients with epilepsy and induce seizure aggravation. Animal models of epilepsy that exhibit affective disorder features are essential in developing new neuromodulatory treatments. GEAS-W rats (Generalized Epilepsy with Absence Seizures, Wistar background) are an inbred model of generalized epilepsy showing spontaneous spike-wave discharges concomitant with immobility. Transcranial Direct Current Stimulation (tDCS) is a safe non-invasive neuromodulatory therapy used to modulate dysfunctional circuitries frequently and successfully applied in affective disorders for symptom alleviation. Here we investigated anxiolytic and antidepressant effects of tDCS in GEAS-W rats and the role of corticosterone as a possible mechanism of action. GEAS-W and Wistar rats were randomly divided into control, sham-tDCS and active-tDCS groups. Both tDCS groups received 15 sessions of sham or active-tDCS (1 mA, cathode). Behavioural tests included the Open Field and Forced Swimming tests followed by corticosterone analysis. We observed a main effect of treatment and a significant treatment by strain interaction on anxiety-like and depressive-like behaviours, with active-tDCS GEAS-W rats entering the center of the open field more often and showing less immobility in the forced swimming test. Furthermore, there was a main effect of treatment on corticosterone with active-tDCS animals showing marked reduction in plasmatic levels. This study described preclinical evidence to support tDCS treatment of affective disorders in epilepsy and highlights corticosterone as a possible mechanism of action.
Collapse
Affiliation(s)
- Flavia Venetucci Gouveia
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada; Division of Neuroscience, Sírio-Libanês Hospital, São Paulo, Brazil.
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | | | - Marina C Castro
- Division of Neuroscience, Sírio-Libanês Hospital, São Paulo, Brazil
| | - Geiza F Antunes
- Division of Neuroscience, Sírio-Libanês Hospital, São Paulo, Brazil
| | - Gisele C V Gomes
- Laboratory of Neuroscience LIM 01, Department of Pathology, University of Sao Paulo, School of Medicine, São Paulo, Brazil
| | - Tais R C Pinto
- Laboratory of Neuroscience LIM 01, Department of Pathology, University of Sao Paulo, School of Medicine, São Paulo, Brazil
| | - Raquel C R Martinez
- Division of Neuroscience, Sírio-Libanês Hospital, São Paulo, Brazil; LIM 23, Institute of Psychiatry, University of Sao Paulo, School of Medicine, São Paulo, Brazil.
| | - Angela C Valle
- Laboratory of Neuroscience LIM 01, Department of Pathology, University of Sao Paulo, School of Medicine, São Paulo, Brazil
| |
Collapse
|
12
|
Hödl S, Olbert E, Mahringer C, Carrette E, Meurs A, Gadeyne S, Dauwe I, Goossens L, Raedt R, Boon P, Vonck K. Severe autonomic nervous system imbalance in Lennox-Gastaut syndrome patients demonstrated by heart rate variability recordings. Epilepsy Res 2021; 177:106783. [PMID: 34626869 DOI: 10.1016/j.eplepsyres.2021.106783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Patients diagnosed with Lennox Gastaut syndrome (LGS), an epileptic encephalopathy characterized by usually drug resistant generalized and focal seizures, are often considered as candidates for vagus nerve stimulation (VNS). Recent research shows that heart rate variability (HRV) differs in epilepsy patients and is related to VNS treatment response. This study investigated pre-ictal HRV in generalized onset seizures of patients with LGS in correlation with their VNS response. METHODS In drug resistant epilepsy (DRE) patients diagnosed with LGS video-electroencephalography recording was performed during their pre-surgical evaluation. Six HRV parameters (time and-, frequency domain, non-linear parameters) were evaluated for every seizure in epochs of 10 min at baseline (60 to 50 min before seizure onset) and pre-ictally (10 min prior to seizure onset). The results were correlated to VNS response after one year of VNS therapy. RESULTS Seven patients and 31 seizures were included, two patients were classified as VNS responders (≥ 50 % seizure reduction). No difference in pre-ictal HRV parameters between VNS responders and VNS non-responders could be found, but high frequency (HF) power, reflecting the parasympathetic tone increased significantly in the pre-ictal epoch in both VNS responders and VNS non-responders (p = 0.017, p = 0.004). SIGNIFICANCE In this pilot data pre-ictal HRV did not differ in VNS responders compared to VNS non-responders, but showed a significant increase in HF power - a parasympathetic overdrive - in both VNS responders and VNS non-responders. This sudden autonomic imbalance might have an influence on the cardiovascular system in the ictal period. Generalized tonic-clonic seizures are regarded as the main risk factor for SUDEP and severe seizure-induced autonomic imbalance may play a role in the pathophysiological pathway.
Collapse
Affiliation(s)
- S Hödl
- Department of Neurology, 4Brain, Institute for Neuroscience, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium.
| | - E Olbert
- Department of Neurology, University Hospital Tulln, Karl Landsteiner University of Health Sciences, Austria
| | - C Mahringer
- Institute of Signal Processing, Kepler University Hospital, Med Campus III., Linz, Austria
| | - E Carrette
- Department of Neurology, 4Brain, Institute for Neuroscience, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| | - A Meurs
- Department of Neurology, 4Brain, Institute for Neuroscience, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| | - S Gadeyne
- Department of Neurology, 4Brain, Institute for Neuroscience, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| | - I Dauwe
- Department of Neurology, 4Brain, Institute for Neuroscience, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| | - L Goossens
- Department of Neurology, 4Brain, Institute for Neuroscience, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| | - R Raedt
- Department of Neurology, 4Brain, Institute for Neuroscience, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| | - P Boon
- Department of Neurology, 4Brain, Institute for Neuroscience, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| | - K Vonck
- Department of Neurology, 4Brain, Institute for Neuroscience, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
13
|
Abstract
The baboon offers a natural model for genetic generalized epilepsy with photosensitivity. In this review, we will summarize some of the more important clinical, neuroimaging, and elctrophysiological findings form recent work performed at the Southwest National Primate Research Center (SNPRC, Texas Biomedical Research Institute, San Antonio, Texas), which houses the world's largest captive baboon pedigree. Due to the phylogenetic proximity of the baboon to humans, many of the findings are readily translatable, but there may be some important differences, such as the mutlifocality of the ictal and interictal epileptic discharges (IEDs) on intracranial electroencephalography (EEG) and greater parieto-occipital connectivity of baboon brain networks compared to juvenile myoclonic epilepsy in humans. Furthermore, there is still limited knowledge of the natural history of the epilepsy, which could be transformative for research into epileptogenesis in genetic generalized epilepsy (GGE) and sudden unexpected death in epilepsy (SUDEP).
Collapse
|
14
|
Differentiating ictal/subclinical spikes and waves in childhood absence epilepsy by spectral and network analyses: A pilot study. Clin Neurophysiol 2021; 132:2222-2231. [PMID: 34311205 DOI: 10.1016/j.clinph.2021.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Childhood absence epilepsy (CAE) is a disease with distinct seizure semiology and electroencephalographic (EEG) features. Differentiating ictal and subclinical generalized spikes and waves discharges (GSWDs) in the EEG is challenging, since they appear to be identical upon visual inspection. Here, spectral and functional connectivity (FC) analyses were applied to routine EEG data of CAE patients, to differentiate ictal and subclinical GSWDs. METHODS Twelve CAE patients with both ictal and subclinical GSWDs were retrospectively selected for this study. The selected EEG epochs were subjected to frequency analysis in the range of 1-30 Hz. Further, FC analysis based on the imaginary part of coherency was used to determine sensor level networks. RESULTS Delta, alpha and beta band frequencies during ictal GSWDs showed significantly higher power compared to subclinical GSWDs. FC showed significant network differences for all frequency bands, demonstrating weaker connectivity between channels during ictal GSWDs. CONCLUSION Using spectral and FC analyses significant differences between ictal and subclinical GSWDs in CAE patients were detected, suggesting that these features could be used for machine learning classification purposes to improve EEG monitoring. SIGNIFICANCE Identifying differences between ictal and subclinical GSWDs using routine EEG, may improve understanding of this syndrome and the management of patients with CAE.
Collapse
|
15
|
Morales Chacón LM, Galan García L, Berrillo Batista S, González González J, Sánchez Coroneaux A. Functional Connectivity Derived From Electroencephalogram in Pharmacoresistant Epileptic Encephalopathy Using Cannabidiol as Adjunctive Antiepileptic Therapy. Front Behav Neurosci 2021; 15:604207. [PMID: 33708077 PMCID: PMC7940673 DOI: 10.3389/fnbeh.2021.604207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
To explore brain function using functional connectivity and network topology derived from electroencephalogram (EEG) in patients with pharmacoresistant epileptic encephalopathy with cannabidiol as adjunctive antiepileptic treatment. Sixteen epileptic patients participated in the study, six of whom had epileptic encephalopathy with a stable dose of cannabidiol Epidiolex (CBD) as adjunctive therapy. Functional connectivity derived from EEG was analyzed based on the synchronization likelihood (SL). The analysis also included reconstructing graph-theoretic measures from the synchronization matrix. Comparison of functional connectivity data between each pathological group with the control group was carried out using a nonparametric permutation test applied to SL values between pairs of electrodes for each frequency band. To compare the association patterns between graph-theoretical properties of each pathological group with the control group, Z Crawford was calculated as a measure of distance. There were differences between pairs of electrodes in all frequency bands evaluated in encephalopathy epileptic patients with CBD adjunctive therapy compared with the control (p < 0.05, permutation test). In the epileptic encephalopathy group without CBD therapy, the SL values were higher than in the control group for the beta, theta, and delta EEG frequency bands, and lower for the alpha frequency band. Interestingly, patients who had CBD as adjunctive therapy demonstrated greater synchronization for all frequency bands, showing less spatial distribution for alpha frequency compared with the control. When comparing both epileptic groups, those patients who had adjunctive CBD treatment also showed increased synchronization for all frequency bands. In epileptic encephalopathy with adjunctive CBD therapy, the pattern of differences for graph-theoretical measures according to Z Crawford indicated less segregation and greater integration suggesting a trend towards the random organization of the network principally for alpha and beta EEG bands. This exploratory study revealed a tendency to an overconnectivity with a random network topology mainly for fast EEG bands in epileptic encephalopathy patients using CBD adjunctive therapy. It can therefore be assumed that the CBD treatment could be related to inhibition of the transition of the interictal to ictal state and/or to the improvement of EEG organization and brain function.
Collapse
Affiliation(s)
- Lilia Maria Morales Chacón
- Department of Clinical Neurophysiology/Video EEG Unit, International Center for Neurological Restoration, Havana, Cuba
| | | | - Sheyla Berrillo Batista
- Department of Clinical Neurophysiology/Video EEG Unit, International Center for Neurological Restoration, Havana, Cuba
| | - Judith González González
- Department of Clinical Neurophysiology/Video EEG Unit, International Center for Neurological Restoration, Havana, Cuba
| | - Abel Sánchez Coroneaux
- Department of Clinical Neurophysiology/Video EEG Unit, International Center for Neurological Restoration, Havana, Cuba
| |
Collapse
|
16
|
Graph energy based centrality measures to detect epileptogenic focal invasive EEG electrodes. Seizure 2021; 85:127-137. [PMID: 33461031 DOI: 10.1016/j.seizure.2020.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Medically intractable epilepsy can be treated with surgical interventions, which require localization of the cortical region where seizures start. This region is referred to as the epileptogenic zone (EZ). Good surgical outcomes depend on an exact localization of the EZ. METHODS We propose a graph theoretical approach providing a novel method to localize the epileptogenic zone using invasive electroencephalogram (EEG) data. The proposed methods employ centrality determination using three graph energies, namely simple graph energy, Laplacian energy, and distance energy. Centrality values of invasive EEG electrodes from 19 patients were analyzed at different frequency bands and at different time points. K-means clustering was used to distinguish focal (electrodes placed in the epileptogenic zone) from non-focal electrodes using the centrality values obtained. RESULTS Focal electrodes show higher centrality values when compared to non-focal electrodes. All three graph energy based centrality measures proposed show maximum f-score and accuracy during the early seizure phase in the gamma frequency band. Among the three proposed methods, simple graph energy based centrality outperforms Laplacian centrality and distance energy based centrality and also other related and competitive methods available in the literature in terms of accuracy and f-score. CONCLUSION Graph energy based centrality measures are useful parameters for the delineation of the epileptogenic zone. Among the three centrality measures examined, simple graph energy based centrality proved best suited for this purpose.
Collapse
|
17
|
Crunelli V, Lőrincz ML, McCafferty C, Lambert RC, Leresche N, Di Giovanni G, David F. Clinical and experimental insight into pathophysiology, comorbidity and therapy of absence seizures. Brain 2020; 143:2341-2368. [PMID: 32437558 PMCID: PMC7447525 DOI: 10.1093/brain/awaa072] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/19/2019] [Accepted: 01/31/2020] [Indexed: 12/24/2022] Open
Abstract
Absence seizures in children and teenagers are generally considered relatively benign because of their non-convulsive nature and the large incidence of remittance in early adulthood. Recent studies, however, show that 30% of children with absence seizures are pharmaco-resistant and 60% are affected by severe neuropsychiatric comorbid conditions, including impairments in attention, cognition, memory and mood. In particular, attention deficits can be detected before the epilepsy diagnosis, may persist even when seizures are pharmacologically controlled and are aggravated by valproic acid monotherapy. New functional MRI-magnetoencephalography and functional MRI-EEG studies provide conclusive evidence that changes in blood oxygenation level-dependent signal amplitude and frequency in children with absence seizures can be detected in specific cortical networks at least 1 min before the start of a seizure, spike-wave discharges are not generalized at seizure onset and abnormal cortical network states remain during interictal periods. From a neurobiological perspective, recent electrical recordings and imaging of large neuronal ensembles with single-cell resolution in non-anaesthetized models show that, in contrast to the predominant opinion, cortical mechanisms, rather than an exclusively thalamic rhythmogenesis, are key in driving seizure ictogenesis and determining spike-wave frequency. Though synchronous ictal firing characterizes cortical and thalamic activity at the population level, individual cortico-thalamic and thalamocortical neurons are sparsely recruited to successive seizures and consecutive paroxysmal cycles within a seizure. New evidence strengthens previous findings on the essential role for basal ganglia networks in absence seizures, in particular the ictal increase in firing of substantia nigra GABAergic neurons. Thus, a key feature of thalamic ictogenesis is the powerful increase in the inhibition of thalamocortical neurons that originates at least from two sources, substantia nigra and thalamic reticular nucleus. This undoubtedly provides a major contribution to the ictal decrease in total firing and the ictal increase of T-type calcium channel-mediated burst firing of thalamocortical neurons, though the latter is not essential for seizure expression. Moreover, in some children and animal models with absence seizures, the ictal increase in thalamic inhibition is enhanced by the loss-of-function of the astrocytic GABA transporter GAT-1 that does not necessarily derive from a mutation in its gene. Together, these novel clinical and experimental findings bring about paradigm-shifting views of our understanding of absence seizures and demand careful choice of initial monotherapy and continuous neuropsychiatric evaluation of affected children. These issues are discussed here to focus future clinical and experimental research and help to identify novel therapeutic targets for treating both absence seizures and their comorbidities.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff, UK
| | - Magor L Lőrincz
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff, UK.,Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Cian McCafferty
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Régis C Lambert
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine and Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | - Nathalie Leresche
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine and Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff, UK
| | - François David
- Cerebral dynamics, learning and plasticity, Integrative Neuroscience and Cognition Center - UMR 8002, Paris, France
| |
Collapse
|
18
|
Sun Y, Li Y, Shi Q, Wu C, Sun J, Chen Q, Hu Z, Xiang J, Wang X. Changes of Ictal-Onset Epileptic Network Synchronicity in Childhood Absence Epilepsy: A Magnetoencephalography Study. Front Neurol 2020; 11:583267. [PMID: 33304308 PMCID: PMC7693636 DOI: 10.3389/fneur.2020.583267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: To further understand the mechanisms underlying epileptic network and the characteristics of individual specific network, we conducted a study on brain network by magnetoencephalography (MEG) focusing on patients with childhood absence epilepsy (CAE). Methods: The network connectivity of 22 patients was investigated with MEG at the source level. Network connectivity of spikes and slow waves was computed with accumulated source imaging (ASI) and correlation analysis. Time-frequency analysis was used to characterize the network changes during the ictal-onset period of each patient and the potential factors. Results: We found that spectral power increased at around 1 s and distributed at 2-4 Hz in all patients. Ictal spikes simultaneously showed elevation of network connectivity, predominantly excitatory connections, when generalized firing activity spread to the overall brain. High-frequency oscillations (HFOs) were prone to detect overexcited neuronal firing in certain focal areas. Conclusions: Personal network changes during ictal onset had unique features in the time range and parallel seizure rhythm uniformly in every patient. There was an important time point for generalized discharges of the epileptic network. Ictal spiking activity played an important role in the epileptic network synchronicity of childhood absence epilepsy. Frequency oscillations provided references for locating abnormal changes in neuromagnetic signals.
Collapse
Affiliation(s)
- Yulei Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yihan Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qi Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Caiyun Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qiqi Chen
- MEG Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Hu
- Department of Neurology, Nanjing Children's Hospital, Nanjing, China
| | - Jing Xiang
- Division of Neurology, MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Network characteristics of genetic generalized epilepsy: Are the syndromes distinct? Seizure 2020; 82:91-98. [DOI: 10.1016/j.seizure.2020.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 01/02/2023] Open
|
20
|
Sun J, Gao Y, Miao A, Yu C, Tang L, Huang S, Wu C, Shi Q, Zhang T, Li Y, Sun Y, Wang X. Multifrequency Dynamics of Cortical Neuromagnetic Activity Underlying Seizure Termination in Absence Epilepsy. Front Hum Neurosci 2020; 14:221. [PMID: 32670039 PMCID: PMC7332835 DOI: 10.3389/fnhum.2020.00221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose This study aimed to investigate the spectral and spatial signatures of neuromagnetic activity underlying the termination of absence seizures. Methods Magnetoencephalography (MEG) data were recorded from 18 drug-naive patients with childhood absence epilepsy (CAE). Accumulated source imaging (ASI) was used to analyze MEG data at the source level in seven frequency ranges: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), gamma (30–80 Hz), ripple (80–250 Hz), and fast ripple (250–500 Hz). Result In the 1–4, 4–8, and 8–12 Hz ranges, the magnetic source during seizure termination appeared to be consistent over the ictal period and was mainly localized in the frontal cortex (FC) and parieto-occipito-temporal junction (POT). In the 12–30 and 30–80 Hz ranges, a significant reduction in source activity was observed in the frontal lobe during seizure termination as well as a decrease in peak source strength. The ictal peak source strength in the 1–4 Hz range was negatively correlated with the ictal duration of the seizure, whereas in the 30–80 Hz range, it was positively correlated with the course of epilepsy. Conclusion The termination of absence seizures is associated with a dynamic neuromagnetic process. Frequency-dependent changes in the FC were observed during seizure termination, which may be involved in the process of neural network interaction. Neuromagnetic activity in different frequency bands may play different roles in the pathophysiological mechanism during absence seizures.
Collapse
Affiliation(s)
- Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yuan Gao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ailiang Miao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Chuanyong Yu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Lu Tang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Shuyang Huang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Caiyun Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qi Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Tingting Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yihan Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yulei Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Shi Q, Zhang T, Miao A, Sun J, Sun Y, Chen Q, Hu Z, Xiang J, Wang X. Differences Between Interictal and Ictal Generalized Spike-Wave Discharges in Childhood Absence Epilepsy: A MEG Study. Front Neurol 2020; 10:1359. [PMID: 32038453 PMCID: PMC6992575 DOI: 10.3389/fneur.2019.01359] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/09/2019] [Indexed: 12/05/2022] Open
Abstract
Purpose: To investigate the differences between interictal and ictal generalized spike-wave discharges (GSWDs) for insights on how epileptic activity propagates and the physiopathological mechanisms underlying childhood absence epilepsy (CAE). Methods: Twenty-five patients with CAE were studied using magnetoencephalography (MEG). MEG data were digitized at 6,000 Hz during the interictal and ictal GSWDs. GSWDs were analyzed at both neural magnetic source levels and functional connectivity (FC) in multifrequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), gamma (30–80 Hz), ripple (80–250 Hz), and fast ripple (250–500 Hz). Brain FC was studied with the posterior cingulate cortex/precuneus (PCC/pC) as the seed region. Results: The magnetic source of interictal GSWDs mainly locates in the PCC/pC region at 4–8 and 8–12 Hz, while that of ictal GSWDs mainly locates in the medial frontal cortex (MFC) at 80–250 Hz. There were statistically significant differences between interictal and ictal GSWDs (p < 0.05). The FC network involving the PCC/pC showed strong connections in the anterior-posterior pathways (mainly with the frontal cortex) at 80–250 Hz during ictal GSWDs, while the interictal GSWDs FC were mostly limited to the posterior cortex region. There was no significant difference in the magnetic source strength among interictal and ictal GSWDs at all bandwidths. Conclusions: There are significant disparities in the source localization and FC between interictal and ictal GSWDs. Low-frequency activation in the PCC/pC during inhibition of seizures possibly relates to the maintenance of consciousness during interictal GSWDs. High-frequency oscillations (HFOs) of the MFC during CAE may associate with the inducing or occurrence of GSWDs. Weakened network connections may be in favor of preventing overexcitability and relates to the termination of GSWDs.
Collapse
Affiliation(s)
- Qi Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Tingting Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ailiang Miao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yulei Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qiqi Chen
- MEG Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Hu
- Department of Neurology, Nanjing Children's Hospital, Nanjing, China
| | - Jing Xiang
- Division of Neurology, MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Ossenblok P, van Houdt P, Colon A, Stroink H, van Luijtelaar G. A network approach to investigate the bi-hemispheric synchrony in absence epilepsy. Clin Neurophysiol 2019; 130:1611-1619. [PMID: 31319290 DOI: 10.1016/j.clinph.2019.05.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/11/2019] [Accepted: 05/22/2019] [Indexed: 11/24/2022]
|
23
|
Kuhlmann L, Lehnertz K, Richardson MP, Schelter B, Zaveri HP. Seizure prediction - ready for a new era. Nat Rev Neurol 2019; 14:618-630. [PMID: 30131521 DOI: 10.1038/s41582-018-0055-2] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epilepsy is a common disorder characterized by recurrent seizures. An overwhelming majority of people with epilepsy regard the unpredictability of seizures as a major issue. More than 30 years of international effort have been devoted to the prediction of seizures, aiming to remove the burden of unpredictability and to couple novel, time-specific treatment to seizure prediction technology. A highly influential review published in 2007 concluded that insufficient evidence indicated that seizures could be predicted. Since then, several advances have been made, including successful prospective seizure prediction using intracranial EEG in a small number of people in a trial of a real-time seizure prediction device. In this Review, we examine advances in the field, including EEG databases, seizure prediction competitions, the prospective trial mentioned and advances in our understanding of the mechanisms of seizures. We argue that these advances, together with statistical evaluations, set the stage for a resurgence in efforts towards the development of seizure prediction methodologies. We propose new avenues of investigation involving a synergy between mechanisms, models, data, devices and algorithms and refine the existing guidelines for the development of seizure prediction technology to instigate development of a solution that removes the burden of the unpredictability of seizures.
Collapse
Affiliation(s)
- Levin Kuhlmann
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Victoria, Australia.,Department of Medicine - St. Vincent's, The University of Melbourne, Parkville, Victoria, Australia.,Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn, Bonn, Germany. .,Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany.
| | - Mark P Richardson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Björn Schelter
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, UK
| | - Hitten P Zaveri
- Department of Neurology, Yale University, New Haven, CT, USA
| |
Collapse
|
24
|
Bear JJ, Chapman KE, Tregellas JR. The epileptic network and cognition: What functional connectivity is teaching us about the childhood epilepsies. Epilepsia 2019; 60:1491-1507. [PMID: 31247129 PMCID: PMC7175745 DOI: 10.1111/epi.16098] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/09/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
Abstract
Our objective was to summarize and evaluate the rapidly expanding body of literature studying functional connectivity in childhood epilepsy. In the self-limited childhood epilepsies, awareness of cognitive comorbidities has been steadily increasing, and recent advances in our understanding of the network effects of these disorders promise insights into the underlying neurobiology. We reviewed publications addressing functional connectivity in children with epilepsy with an emphasis on studies of children with self-limited childhood epilepsies. The majority of studies have been published in the past 10 years and predominantly examine childhood epilepsy with centrotemporal spikes and childhood absence epilepsy. Cognitive network alterations are commonly observed across the childhood epilepsies. Some of these effects appear to be nonspecific to epilepsy syndrome or even to category of neurological disorder. Other patterns, such as changes in the connectivity of cortical language areas in childhood epilepsy with centrotemporal spikes, provide clues to the underlying cognitive deficits seen in affected children. The literature to date is dominated by general observations of connectivity patterns without a priori hypotheses. These data-driven studies build an important foundation for hypothesis generation and are already providing useful insights into the neuropathology of the childhood epilepsies. Future work should emphasize hypothesis-driven approaches and rigorous clinical correlations to better understand how the knowledge of network alterations can be applied to guidance and treatment for the children in our clinics.
Collapse
Affiliation(s)
- Joshua J Bear
- Department of Pediatrics, Section of Neurology, Children’s Hospital Colorado
- Department of Pediatrics, University of Colorado Anschutz Medical Campus
| | - Kevin E Chapman
- Department of Pediatrics, Section of Neurology, Children’s Hospital Colorado
- Department of Pediatrics, University of Colorado Anschutz Medical Campus
| | - Jason R Tregellas
- Department of Psychiatry, University of Colorado Anschutz Medical Campus
- Research Service, Rocky Mountain Regional VA Medical Center
| |
Collapse
|
25
|
Liu H, Li W, Zhao M, Wu J, Wu J, Yang J, Jiao B. Altered temporal dynamics of brain activity in patients with generalized tonic-clonic seizures. PLoS One 2019; 14:e0219904. [PMID: 31314786 PMCID: PMC6636756 DOI: 10.1371/journal.pone.0219904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022] Open
Abstract
Generalized seizures engage bilateral networks from their onset at a low temporal scale. Previous studies findings have demonstrated focal/local brain activity abnormalities in the patients with generalized tonic-clonic seizures (GTCS). Resting state functional magnetic resonance imaging (fMRI) allows the detection of aberrant spontaneous brain activity in GTCS. Little is known, however, about alterations of dynamics (temporal variability) of spontaneous brain activity. It also remains unclear whether temporal variability of spontaneous brain activity is associated with disease severity. To address these questions, the current study assessed patients with GTCS (n = 35), and age- and sex-matched healthy controls (HCs, n = 33) who underwent resting state fMRI. We first assessed the dynamics of spontaneous brain activity using dynamic amplitude of low-frequency fluctuation (dALFF). Furthermore, the temporal variability of brain activity was quantified as the variance of dALFF across sliding window. Compared to HCs, patients with GTCS showed hyper-temporal variability of dALFF in parts of the default mode network, whereas they showed hypo-temporal variability in the somatomotor cortex. Furthermore, dynamic ALFF in the subgenual anterior cingulate cortex was positively correlated with duration of disease, indicating that disease severity is associated with excessive variability. These results suggest both an excessive variability and excessive stability in patients with GTCS. Overall, the current findings from brain activity dynamics contribute to our understanding of the pathophysiological mechanisms of generalized seizure.
Collapse
Affiliation(s)
- Honglei Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
- Department of Neurosurgery, Shijiazhuang the Third Hospital, Shijiazhuang, P.R. China
| | - Wenling Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Mingjuan Zhao
- Medical Imaging Department, Hebei General Hospital, Shijiazhuang, P.R. China
| | - Jie Wu
- Department of Neurosurgery, Shijiazhuang the Third Hospital, Shijiazhuang, P.R. China
| | - Jing Wu
- Department of Neurosurgery, Shijiazhuang the Third Hospital, Shijiazhuang, P.R. China
| | - Jiankai Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Baohua Jiao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| |
Collapse
|
26
|
Jiang W, Wu C, Xiang J, Miao A, Qiu W, Tang L, Huang S, Chen Q, Hu Z, Wang X. Dynamic Neuromagnetic Network Changes of Seizure Termination in Absence Epilepsy: A Magnetoencephalography Study. Front Neurol 2019; 10:703. [PMID: 31338058 PMCID: PMC6626921 DOI: 10.3389/fneur.2019.00703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/14/2019] [Indexed: 11/28/2022] Open
Abstract
Objective: With increasing efforts devoted to investigating the generation and propagation mechanisms of spontaneous spike and wave discharges (SWDs), little attention has been paid to network mechanisms associated with termination patterns of SWDs to date. In the current study, we aimed to identify the frequency-dependent neural network dynamics during the offset of absence seizures. Methods: Fifteen drug-naïve patients with childhood absence epilepsy (CAE) were assessed with a 275-Channel Magnetoencephalography (MEG) system. MEG data were recorded during and between seizures at a sampling rate of 6,000 Hz and analyzed in seven frequency bands. Source localization was performed with accumulated source imaging. Granger causality analysis was used to evaluate effective connectivity networks of the entire brain at the source level. Results: At the low-frequency (1–80 Hz) bands, activities were predominantly distributed in the frontal cortical and parieto–occipito–temporal junction at the offset transition periods. The high-frequency oscillations (HFOs, 80–500 Hz) analysis indicated significant source localization in the medial frontal cortex and deep brain areas (mainly thalamus) during both the termination transition and interictal periods. Furthermore, an enhanced positive cortico–thalamic effective connectivity was observed around the discharge offset at all of the seven analyzed bands, the direction of which was primarily from various cortical regions to the thalamus. Conclusions: Seizure termination is a gradual process that involves both the cortices and the thalamus in CAE. Cortico–thalamic coupling is observed at the termination transition periods, and the cerebral cortex acts as the driving force.
Collapse
Affiliation(s)
- Wenwen Jiang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Caiyun Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jing Xiang
- Division of Neurology, MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Ailiang Miao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Wenchao Qiu
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Lu Tang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Shuyang Huang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qiqi Chen
- MEG Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Hu
- Department of Neurology, Nanjing Children's Hospital, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Outgrowing seizures in Childhood Absence Epilepsy: time delays and bistability. J Comput Neurosci 2019; 46:197-209. [PMID: 30737596 DOI: 10.1007/s10827-019-00711-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/14/2018] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
We formulate a conductance-based model for a 3-neuron motif associated with Childhood Absence Epilepsy (CAE). The motif consists of neurons from the thalamic relay (TC) and reticular nuclei (RT) and the cortex (CT). We focus on a genetic defect common to the mouse homolog of CAE which is associated with loss of GABAA receptors on the TC neuron, and the fact that myelination of axons as children age can increase the conduction velocity between neurons. We show the combination of low GABAA mediated inhibition of TC neurons and the long corticothalamic loop delay gives rise to a variety of complex dynamics in the motif, including bistability. This bistability disappears as the corticothalamic conduction delay shortens even though GABAA activity remains impaired. Thus the combination of deficient GABAA activity and changing axonal myelination in the corticothalamic loop may be sufficient to account for the clinical course of CAE.
Collapse
|
28
|
Ictal Source Locations and Cortico-Thalamic Connectivity in Childhood Absence Epilepsy: Associations with Treatment Response. Brain Topogr 2018; 32:178-191. [PMID: 30291582 DOI: 10.1007/s10548-018-0680-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
Childhood absence epilepsy (CAE), the most common pediatric epilepsy syndrome, is usually treated with valproic acid (VPA) and lamotrigine (LTG) in China. This study aimed to investigate the ictal source locations and functional connectivity (FC) networks between the cortices and thalamus that are related to treatment response. Magnetoencephalography (MEG) data from 25 patients with CAE were recorded at 300 Hz and analyzed in 1-30 Hz frequency bands. Neuromagnetic sources were volumetrically scanned with accumulated source imaging. The FC networks between the cortices and thalamus were evaluated at the source level through a connectivity analysis. Treatment outcome was assessed after 36-66 months following MEG recording. The children with CAE were divided into LTG responder, LTG non-responder, VPA responder and VPA non-responder groups. The ictal source locations and cortico-thalamic FC networks were compared to the treatment response. The ictal source locations in the post-dorsal medial frontal cortex (post-DMFC, including the medial primary motor cortex and the supplementary sensorimotor area) were observed in all LTG non-responders but in all LTG responders. At 1-7 Hz, patients with fronto-thalamo-parietal/occipital (F-T-P/O) networks were older than those with fronto-thalamic (F-T) networks or other cortico-thalamic networks (p = 0.000). The duration of seizures in patients with F-T-P/O networks at 1-7 Hz was longer than that in patients with F-T networks or other cortico-thalamic networks (p = 0.001). The ictal post-DMFC source localizations suggest that children with CAE might experience initial LTG monotherapy failure. Moreover, the cortico-thalamo-cortical network is associated with age. Finally, the cortico-thalamo-cortical network consists of anterior and posterior cortices and might contribute to the maintenance of discharges.
Collapse
|
29
|
Youssofzadeh V, Agler W, Tenney JR, Kadis DS. Whole-brain MEG connectivity-based analyses reveals critical hubs in childhood absence epilepsy. Epilepsy Res 2018; 145:102-109. [PMID: 29936300 DOI: 10.1016/j.eplepsyres.2018.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/21/2018] [Accepted: 06/03/2018] [Indexed: 01/01/2023]
Abstract
Absence seizures are thought to be linked to abnormal interplays between regions of a thalamocortical network. However, the complexity of this widespread network makes characterizing the functional interactions among various brain regions challenging. Using whole-brain functional connectivity and network analysis of magnetoencephalography (MEG) data, we explored pre-treatment brain hubs ("highly connected nodes") of patients aged 6 to 12 years with childhood absence epilepsy. We analyzed ictal MEG data of 74 seizures from 16 patients. We employed a time-domain beamformer technique to estimate MEG sources in broadband (1-40 Hz) where the greatest power changes between ictal and preictal periods were identified. A phase synchrony measure, phase locking value, and a graph theory metric, eigenvector centrality (EVC), were utilized to quantify voxel-level connectivity and network hubs of ictal > preictal periods, respectively. A volumetric atlas containing 116 regions of interests (ROIs) was utilized to summarize the network measures. ROIs with EVC (z-score) > 1.96 were reported as critical hubs. ROIs analysis revealed functional-anatomical hubs in a widespread network containing bilateral precuneus (right/left, z = 2.39, 2.18), left thalamus (z = 2.28), and three anterior cerebellar subunits of lobule "IV-V" (z = 3.9), vermis "IV-V" (z = 3.57), and lobule "III" (z = 2.03). Findings suggest that highly connected brain areas or hubs are present in focal cortical, subcortical, and cerebellar regions during absence seizures. Hubs in thalami, precuneus and cingulate cortex generally support a theory of rapidly engaging and bilaterally distributed networks of cortical and subcortical regions responsible for seizures generation, whereas hubs in anterior cerebellar regions may be linked to terminating motor automatisms frequently seen during typical absence seizures. Whole-brain network connectivity is a powerful analytic tool to reveal focal components of absence seizures in MEG. Our investigations can lead to a better understanding of the pathophysiology of CAE.
Collapse
Affiliation(s)
- Vahab Youssofzadeh
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA; Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical Center, Cincinnati OH, USA; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - William Agler
- Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical Center, Cincinnati OH, USA; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Jeffrey R Tenney
- Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical Center, Cincinnati OH, USA; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; College of Medicine, Department of Pediatrics, University of Cincinnati, Cincinnati OH, USA.
| | - Darren S Kadis
- Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical Center, Cincinnati OH, USA; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; College of Medicine, Department of Pediatrics, University of Cincinnati, Cincinnati OH, USA.
| |
Collapse
|
30
|
Tenney JR, Kadis DS, Agler W, Rozhkov L, Altaye M, Xiang J, Vannest J, Glauser TA. Ictal connectivity in childhood absence epilepsy: Associations with outcome. Epilepsia 2018; 59:971-981. [PMID: 29633248 DOI: 10.1111/epi.14067] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The understanding of childhood absence epilepsy (CAE) has been revolutionized over the past decade, but the biological mechanisms responsible for variable treatment outcomes are unknown. Our purpose in this prospective observational study was to determine how pretreatment ictal network pathways, defined using a combined electroencephalography (EEG)-functional magnetic resonance imaging (EEG-fMRI) and magnetoencephalography (MEG) effective connectivity analysis, were related to treatment response. METHODS Sixteen children with newly diagnosed and drug-naive CAE had 31 typical absence seizures during EEG-fMRI and 74 during MEG. The spatial extent of the pretreatment ictal network was defined using fMRI hemodynamic response with an event-related independent component analysis (eICA). This spatially defined pretreatment ictal network supplied prior information for MEG-effective connectivity analysis calculated using phase slope index (PSI). Treatment outcome was assessed 2 years following diagnosis and dichotomized to ethosuximide (ETX)-treatment responders (N = 11) or nonresponders (N = 5). Effective connectivity of the pretreatment ictal network was compared to the treatment response. RESULTS Patterns of pretreatment connectivity demonstrated strongest connections in the thalamus and posterior brain regions (parietal, posterior cingulate, angular gyrus, precuneus, and occipital) at delta frequencies and the frontal cortices at gamma frequencies (P < .05). ETX treatment nonresponders had pretreatment connectivity, which was decreased in the precuneus region and increased in the frontal cortex compared to ETX responders (P < .05). SIGNIFICANCE Pretreatment ictal connectivity differences in children with CAE were associated with response to antiepileptic treatment. This is a possible mechanism for the variable treatment response seen in patients sharing the same epilepsy syndrome.
Collapse
Affiliation(s)
- Jeffrey R Tenney
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Darren S Kadis
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - William Agler
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leonid Rozhkov
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mekibib Altaye
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jing Xiang
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jennifer Vannest
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tracy A Glauser
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
31
|
Ngomba RT, van Luijtelaar G. Metabotropic glutamate receptors as drug targets for the treatment of absence epilepsy. Curr Opin Pharmacol 2018; 38:43-50. [PMID: 29547778 DOI: 10.1016/j.coph.2018.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/31/2018] [Indexed: 11/24/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are expressed in key regions of the cortex and the thalamus and are known to regulate spike and wave discharges (SWDs), the electroclinical hallmarks of absence seizures. Recent preclinical studies have highlighted the therapeutic potential of selective group I and III mGlu receptor subtype allosteric modulators, which can suppress pathological SWDs. Of particular interest are positive allosteric modulators (PAMs) for mGlu5 receptors, as they currently show the most promise as novel anti-absence epilepsy drugs. The rational design of novel selective positive and negative allosteric mGlu modulators, especially for the mGlu5 receptor, has been made possible following the recent crystallographic structure determination of group I mGlu receptors. Our current knowledge of the role of different mGlu receptor subtypes in absence epilepsy is outlined in this article.
Collapse
Affiliation(s)
- Richard Teke Ngomba
- School of Pharmacy in College of Science, University of Lincoln, Lincoln LN6 7TS, UK.
| | | |
Collapse
|
32
|
Lopes MA, Lee KE, Goltsev AV. Neuronal network model of interictal and recurrent ictal activity. Phys Rev E 2017; 96:062412. [PMID: 29347379 DOI: 10.1103/physreve.96.062412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 02/04/2023]
Abstract
We propose a neuronal network model which undergoes a saddle node on an invariant circle bifurcation as the mechanism of the transition from the interictal to the ictal (seizure) state. In the vicinity of this transition, the model captures important dynamical features of both interictal and ictal states. We study the nature of interictal spikes and early warnings of the transition predicted by this model. We further demonstrate that recurrent seizures emerge due to the interaction between two networks.
Collapse
Affiliation(s)
- M A Lopes
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom.,Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter EX4 4QD, United Kingdom.,EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter EX4 4QD, United Kingdom.,Department of Physics and I3N, University of Aveiro, 3810-193 Aveiro, Portugal
| | - K-E Lee
- Department of Physics and I3N, University of Aveiro, 3810-193 Aveiro, Portugal.,Department of Anesthesiology and Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - A V Goltsev
- Department of Physics and I3N, University of Aveiro, 3810-193 Aveiro, Portugal.,A.F. Ioffe Physico-Technical Institue, 194021 St. Petersburg, Russia
| |
Collapse
|
33
|
den Heijer JM, Otte WM, van Diessen E, van Campen JS, Lorraine Hompe E, Jansen FE, Joels M, Braun KPJ, Sander JW, Zijlmans M. The relation between cortisol and functional connectivity in people with and without stress-sensitive epilepsy. Epilepsia 2017; 59:179-189. [DOI: 10.1111/epi.13947] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2017] [Indexed: 01/21/2023]
Affiliation(s)
| | - Willem M. Otte
- Department of Pediatric Neurology; Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht The Netherlands
- Biomedical MR Imaging and Spectroscopy Group; Center for Image Sciences; University Medical Center Utrecht; Utrecht The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN); Heemstede The Netherlands
| | - Eric van Diessen
- Department of Pediatric Neurology; Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht The Netherlands
| | - Jolien S. van Campen
- Department of Pediatric Neurology; Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht The Netherlands
- Department of Translational Neuroscience; Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht The Netherlands
| | | | - Floor E. Jansen
- Department of Pediatric Neurology; Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht The Netherlands
| | - Marian Joels
- Department of Translational Neuroscience; Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht The Netherlands
- University Medical Center Groningen; Groningen The Netherlands
| | - Kees P. J. Braun
- Department of Pediatric Neurology; Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht The Netherlands
| | - Josemir W. Sander
- Stichting Epilepsie Instellingen Nederland (SEIN); Heemstede The Netherlands
- NIHR University College London Hospitals Biomedical Research Centre; UCL Institute of Neurology; London United Kingdom
- Epilepsy Society; Chalfont St Peter United Kingdom
| | - Maeike Zijlmans
- Department of Pediatric Neurology; Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN); Heemstede The Netherlands
| |
Collapse
|
34
|
Maksimenko VA, Lüttjohann A, Makarov VV, Goremyko MV, Koronovskii AA, Nedaivozov V, Runnova AE, van Luijtelaar G, Hramov AE, Boccaletti S. Macroscopic and microscopic spectral properties of brain networks during local and global synchronization. Phys Rev E 2017; 96:012316. [PMID: 29347072 DOI: 10.1103/physreve.96.012316] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Indexed: 11/07/2022]
Abstract
We introduce a practical and computationally not demanding technique for inferring interactions at various microscopic levels between the units of a network from the measurements and the processing of macroscopic signals. Starting from a network model of Kuramoto phase oscillators, which evolve adaptively according to homophilic and homeostatic adaptive principles, we give evidence that the increase of synchronization within groups of nodes (and the corresponding formation of synchronous clusters) causes also the defragmentation of the wavelet energy spectrum of the macroscopic signal. Our methodology is then applied to getting a glance into the microscopic interactions occurring in a neurophysiological system, namely, in the thalamocortical neural network of an epileptic brain of a rat, where the group electrical activity is registered by means of multichannel EEG. We demonstrate that it is possible to infer the degree of interaction between the interconnected regions of the brain during different types of brain activities and to estimate the regions' participation in the generation of the different levels of consciousness.
Collapse
Affiliation(s)
- Vladimir A Maksimenko
- Yuri Gagarin State Technical University of Saratov, REC "Nonlinear Dynamics of Complex Systems," Saratov 410054, Russia
| | - Annika Lüttjohann
- University of Münster, Institute of Physiology I, Münster 48149, Germany
| | - Vladimir V Makarov
- Yuri Gagarin State Technical University of Saratov, REC "Nonlinear Dynamics of Complex Systems," Saratov 410054, Russia
| | - Mikhail V Goremyko
- Yuri Gagarin State Technical University of Saratov, REC "Nonlinear Dynamics of Complex Systems," Saratov 410054, Russia
| | - Alexey A Koronovskii
- Saratov State University, Faculty of Nonlinear Processes, Saratov 410012, Russia
| | - Vladimir Nedaivozov
- Yuri Gagarin State Technical University of Saratov, REC "Nonlinear Dynamics of Complex Systems," Saratov 410054, Russia
| | - Anastasia E Runnova
- Yuri Gagarin State Technical University of Saratov, REC "Nonlinear Dynamics of Complex Systems," Saratov 410054, Russia
| | | | - Alexander E Hramov
- Yuri Gagarin State Technical University of Saratov, REC "Nonlinear Dynamics of Complex Systems," Saratov 410054, Russia
| | - Stefano Boccaletti
- CNR-Institute for complex systems, Sesto Fiorentino 50019, Italy.,The Italian Embassy in Tel Aviv, Tel Aviv 68125, Israel
| |
Collapse
|
35
|
Zerouali Y, Ghaziri J, Nguyen DK. Multimodal investigation of epileptic networks: The case of insular cortex epilepsy. PROGRESS IN BRAIN RESEARCH 2017; 226:1-33. [PMID: 27323937 DOI: 10.1016/bs.pbr.2016.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The insula is a deep cortical structure sharing extensive synaptic connections with a variety of brain regions, including several frontal, temporal, and parietal structures. The identification of the insular connectivity network is obviously valuable for understanding a number of cognitive processes, but also for understanding epilepsy since insular seizures involve a number of remote brain regions. Ultimately, knowledge of the structure and causal relationships within the epileptic networks associated with insular cortex epilepsy can offer deeper insights into this relatively neglected type of epilepsy enabling the refining of the clinical approach in managing patients affected by it. In the present chapter, we first review the multimodal noninvasive tests performed during the presurgical evaluation of epileptic patients with drug refractory focal epilepsy, with particular emphasis on their value for the detection of insular cortex epilepsy. Second, we review the emerging multimodal investigation techniques in the field of epilepsy, that aim to (1) enhance the detection of insular cortex epilepsy and (2) unveil the architecture and causal relationships within epileptic networks. We summarize the results of these approaches with emphasis on the specific case of insular cortex epilepsy.
Collapse
Affiliation(s)
- Y Zerouali
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada; Ecole Polytechnique de Montréal, Montreal, QC, Canada
| | - J Ghaziri
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - D K Nguyen
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada; CHUM-Hôpital Notre-Dame, Montreal, QC, Canada.
| |
Collapse
|
36
|
Wu C, Xiang J, Sun J, Huang S, Tang L, Miao A, Zhou Y, Chen Q, Hu Z, Wang X. Quantify neuromagnetic network changes from pre-ictal to ictal activities in absence seizures. Neuroscience 2017; 357:134-144. [PMID: 28576731 DOI: 10.1016/j.neuroscience.2017.05.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The cortico-thalamo-cortical network plays a key role in childhood absence epilepsy (CAE). However, the exact interaction between the cortex and the thalamus remains incompletely understood. This study aimed to investigate the dynamic changes of frequency-dependent neural networks during the initialization of absence seizures. METHODS Magnetoencephalography data from 14 patients with CAE were recorded during and between seizures at a sampling rate of 6000Hz and analyzed in seven frequency bands. Neuromagnetic sources were volumetrically scanned with accumulated source imaging. Effective connectivity networks of the entire brain, including the cortico-thalamo-cortical network, were evaluated at the source level through Granger causality analysis. RESULTS The low-frequency (1-80Hz) activities showed significant frontal cortical and parieto-occipito-temporal junction source localization around seizures. The high-frequency (80-250Hz) oscillations showed predominant activities consistently localized in deep brain areas and medial frontal cortex. The increased cortico-thalamic effective connectivity was observed around seizures in both low- and high-frequency ranges. The direction was predominantly from the cortex to the thalamus at the early time, although the cortex that drove connectivity varied among subjects. CONCLUSIONS The cerebral cortex plays a key role in driving the cortico-thalamic connections at the early portion of the initialization of absence seizures. The oscillatory activities in the thalamus could be triggered by networks from various regions in the cortex. SIGNIFICANCE The dynamic changes of neural network provide evidences that absence seizures are probably resulted from cortical initialized cortico-thalamic network.
Collapse
Affiliation(s)
- Caiyun Wu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jing Xiang
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45220, USA
| | - Jintao Sun
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shuyang Huang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lu Tang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ailiang Miao
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuchen Zhou
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qiqi Chen
- MEG Center, Nanjing Brain Hospital, Nanjing, Jiangsu 210029, China
| | - Zheng Hu
- Department of Neurology, Nanjing Children's Hospital, Nanjing, Jiangsu 210029, China
| | - Xiaoshan Wang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
37
|
Altered Effective Connectivity Network in Childhood Absence Epilepsy: A Multi-frequency MEG Study. Brain Topogr 2017; 30:673-684. [PMID: 28286918 DOI: 10.1007/s10548-017-0555-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 02/07/2017] [Indexed: 12/11/2022]
Abstract
Using multi-frequency magnetoencephalography (MEG) data, we investigated whether the effective connectivity (EC) network of patients with childhood absence epilepsy (CAE) is altered during the inter-ictal period in comparison with healthy controls. MEG data from 13 untreated CAE patients and 10 healthy controls were recorded. Correlation analysis and Granger causality analysis were used to construct an EC network at the source level in eight frequency bands. Alterations in the spatial pattern and topology of the network in CAE were investigated by comparing the patients with the controls. The network pattern was altered mainly in 1-4 Hz, showing strong connections within the frontal cortex and weak connections in the anterior-posterior pathways. The EC involving the precuneus/posterior cingulate cortex (PC/PCC) significantly decreased in low-frequency bands. In addition, the parameters of graph theory were significantly altered in several low- and high-frequency bands. CAE patients display frequency-specific abnormalities in the network pattern even during the inter-ictal period, and the frontal cortex and PC/PCC might play crucial roles in the pathophysiology of CAE. The EC network of CAE patients was over-connective and random during the inter-ictal period. This study is the first to reveal the frequency-specific alteration in the EC network during the inter-ictal period in CAE patients. Multiple-frequency MEG data are useful in investigating the pathophysiology of CAE, which can serve as new biomarkers of this disorder.
Collapse
|
38
|
Lee C, Im CH, Koo YS, Lim JA, Kim TJ, Byun JI, Sunwoo JS, Moon J, Kim DW, Lee ST, Jung KH, Chu K, Lee SK, Jung KY. Altered Network Characteristics of Spike-Wave Discharges in Juvenile Myoclonic Epilepsy. Clin EEG Neurosci 2017; 48:111-117. [PMID: 26697882 DOI: 10.1177/1550059415621831] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Epilepsy is a disease marked by hypersynchronous bursts of neuronal activity; therefore, identifying the network characteristics of the epileptic brain is important. Juvenile myoclonic epilepsy (JME) represents a common, idiopathic generalized epileptic syndrome, characterized by spike-and-wave discharge (SWD) electroencephalographic (EEG) waveforms. We compare herein the network properties of periods of SWD and baseline activity using graph theory. EEG data were obtained from 11 patients with JME. Functional cortical networks during SWD and baseline periods were estimated by calculating the coherence between all possible electrode pairs in the delta, theta, alpha, beta and gamma bands. Graph theoretical measures, including nodal degree, characteristic path length, clustering coefficient, and small-world index were then used to evaluate the characteristics of epileptic networks in JME. We also assessed short- and long-range connections between SWD and baseline networks. Compared to baseline, increased coherence was observed during SWD in all frequency bands. The nodal degree of the SWD network, particularly in the frontal region, was significantly higher compared to the baseline network. The clustering coefficient and small-world index were significantly lower in the theta and beta bands of the SWD versus baseline network, but the characteristic path length did not differ among networks. Long-range connections were increased during SWD, particularly between frontal and posterior brain regions. Our study suggests that SWD in JME is associated with increased local (particularly in frontal region) connectivity. Furthermore, the SWD network was associated with increased long-range connections, and reduced small-worldness, which may impair information processing during SWD.
Collapse
Affiliation(s)
- Chany Lee
- 1 Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Chang-Hwan Im
- 1 Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Yong Seo Koo
- 2 Department of Neurology, Korea University Medical Center, Korea University College of Medicine, Seoul, Korea
| | - Jung-Ah Lim
- 3 Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Tae-Joon Kim
- 3 Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jung-Ick Byun
- 3 Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jun-Sang Sunwoo
- 3 Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jangsup Moon
- 3 Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Dong Wook Kim
- 4 Department of Neurology, Konkuk University School of Medicine, Seoul, Korea
| | - Soon-Tae Lee
- 3 Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Keun-Hwa Jung
- 3 Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Kon Chu
- 3 Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Sang-Kun Lee
- 3 Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Ki-Young Jung
- 3 Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,5 Department of Neurology, Seoul National University Hospital, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Jedynak M, Pons AJ, Garcia-Ojalvo J, Goodfellow M. Temporally correlated fluctuations drive epileptiform dynamics. Neuroimage 2017; 146:188-196. [PMID: 27865920 PMCID: PMC5353705 DOI: 10.1016/j.neuroimage.2016.11.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/17/2016] [Accepted: 11/13/2016] [Indexed: 12/27/2022] Open
Abstract
Macroscopic models of brain networks typically incorporate assumptions regarding the characteristics of afferent noise, which is used to represent input from distal brain regions or ongoing fluctuations in non-modelled parts of the brain. Such inputs are often modelled by Gaussian white noise which has a flat power spectrum. In contrast, macroscopic fluctuations in the brain typically follow a 1/fb spectrum. It is therefore important to understand the effect on brain dynamics of deviations from the assumption of white noise. In particular, we wish to understand the role that noise might play in eliciting aberrant rhythms in the epileptic brain. To address this question we study the response of a neural mass model to driving by stochastic, temporally correlated input. We characterise the model in terms of whether it generates "healthy" or "epileptiform" dynamics and observe which of these dynamics predominate under different choices of temporal correlation and amplitude of an Ornstein-Uhlenbeck process. We find that certain temporal correlations are prone to eliciting epileptiform dynamics, and that these correlations produce noise with maximal power in the δ and θ bands. Crucially, these are rhythms that are found to be enhanced prior to seizures in humans and animal models of epilepsy. In order to understand why these rhythms can generate epileptiform dynamics, we analyse the response of the model to sinusoidal driving and explain how the bifurcation structure of the model gives rise to these findings. Our results provide insight into how ongoing fluctuations in brain dynamics can facilitate the onset and propagation of epileptiform rhythms in brain networks. Furthermore, we highlight the need to combine large-scale models with noise of a variety of different types in order to understand brain (dys-)function.
Collapse
Affiliation(s)
- Maciej Jedynak
- Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Terrassa, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.
| | - Antonio J Pons
- Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Marc Goodfellow
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK; Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, UK; EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK
| |
Collapse
|
40
|
Milton J, Wu J, Campbell SA, Bélair J. Outgrowing Neurological Diseases: Microcircuits, Conduction Delay and Childhood Absence Epilepsy. COMPUTATIONAL NEUROLOGY AND PSYCHIATRY 2017. [DOI: 10.1007/978-3-319-49959-8_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
41
|
Park KM, Lee BI, Shin KJ, Ha SY, Park J, Kim SE, Kim HC, Kim TH, Mun CW, Kim SE. Juvenile myoclonic epilepsy may be a disorder of cortex rather than thalamus: An effective connectivity analysis. J Clin Neurosci 2017; 35:127-132. [DOI: 10.1016/j.jocn.2016.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/30/2016] [Accepted: 09/28/2016] [Indexed: 01/19/2023]
|
42
|
Ding L, Gallagher MJ. Dynamics of sensorimotor cortex activation during absence and myoclonic seizures in a mouse model of juvenile myoclonic epilepsy. Epilepsia 2016; 57:1568-1580. [PMID: 27573707 DOI: 10.1111/epi.13493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Generalized epilepsy syndromes often confer multiple types of seizures, but it is not known if these seizures activate separate or overlapping brain networks. Recently, we reported that mice with a juvenile myoclonic epilepsy mutation (Gabra1[A322D]) exhibited both absence and myoclonic generalized seizures. Here, we determined the time course of sensorimotor cortex activation and the spatial distribution of spike voltage during these two seizures. METHODS We implanted Gabra1+/A322D mice with multiple electroencephalography (EEG) electrodes over bilateral somatosensory cortex barrel fields (S1) and anterior (aM1) and posterior (pM1) motor cortices and recorded absence seizures/spike-wave discharges (SWDs) and myoclonic seizures. We used nonlinear-association analyses and cross-correlation calculations to determine the strength, leading regions, and time delays of cortical coupling from the preictal to ictal states and within the spike and interspike periods. The distribution of spike voltage was also measured in SWDs and myoclonic seizures. RESULTS EEG connectivity among all electrode pairs increased at the onset of both SWDs and myoclonic seizures. Surprisingly, during spikes of both seizure types, S1 led M1 with similar delay times. Myoclonic seizure spikes started more focally than SWD spikes, with a significant majority appearing first only in S1 electrodes, whereas a substantial fraction of SWD spikes were detected first in S1 and at least one M1 electrode. The absolute voltage of myoclonic seizure spikes was significantly higher than that of SWD spikes, and there was a greater relative voltage over M1 during myoclonic seizure spikes than in the first one to two SWD spikes. SIGNIFICANCE The leading sites in S1 and similar delay times suggest both SWDs and myoclonic seizures activate overlapping networks in sensorimotor cortex and thus, therapeutically targeting of this network could potentially treat both seizures. Spike focality, absolute voltage, and voltage distribution provide insight into neuronal activation during these two seizure types.
Collapse
Affiliation(s)
- Li Ding
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Martin J Gallagher
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A.
| |
Collapse
|
43
|
Kohmann D, Lüttjohann A, Seidenbecher T, Coulon P, Pape HC. Short-term depression of gap junctional coupling in reticular thalamic neurons of absence epileptic rats. J Physiol 2016; 594:5695-710. [PMID: 26940972 DOI: 10.1113/jp271811] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/02/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Gap junctional electrical coupling between neurons of the reticular thalamic nucleus (RTN) is critical for hypersynchrony in the thalamo-cortical network. This study investigates the role of electrical coupling in pathological rhythmogenesis in RTN neurons in a rat model of absence epilepsy. Rhythmic activation resulted in a Ca(2+) -dependent short-term depression (STD) of electrical coupling between pairs of RTN neurons in epileptic rats, but not in RTN of a non-epileptic control strain. Pharmacological blockade of gap junctions in RTN in vivo induced a depression of seizure activity. The STD of electrical coupling represents a mechanism of Ca(2+) homeostasis in RTN aimed to counteract excessive synchronization. ABSTRACT Neurons in the reticular thalamic nucleus (RTN) are coupled by electrical synapses, which play a major role in regulating synchronous activity. This study investigates electrical coupling in RTN neurons from a rat model of childhood absence epilepsy, genetic absence epilepsy rats from Strasbourg (GAERS), compared with a non-epileptic control (NEC) strain, to assess the impact on pathophysiological rhythmogenesis. Whole-cell recordings were obtained from pairs of RTN neurons of GAERS and NEC in vitro. Coupling was determined by injection of hyperpolarizing current steps in one cell and monitoring evoked voltage responses in both activated and coupled cell. The coupling coefficient (cc) was compared under resting condition, during pharmacological interventions and repeated activation using a series of current injections. The effect of gap junctional coupling on seizure expression was investigated by application of gap junctional blockers into RTN of GAERS in vivo. At resting conditions, cc did not differ between GAERS and NEC. During repeated activation, cc declined in GAERS but not in NEC. This depression in cc was restored within 25 s and was prevented by intracellular presence of BAPTA in the activated but not in the coupled cell. Local application of gap junctional blockers into RTN of GAERS in vivo resulted in a decrease of spike wave discharge (SWD) activity. Repeated activation results in a short-term depression (STD) of gap junctional coupling in RTN neurons of GAERS, depending on intracellular Ca(2+) mechanisms in the activated cell. As blockage of gap junctions in vivo results in a decrease of SWD activity, the STD observed in GAERS is considered a compensatory mechanism, aimed to dampen SWD activity.
Collapse
Affiliation(s)
| | | | - Thomas Seidenbecher
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Münster, Germany
| | | | | |
Collapse
|
44
|
Leal A, Vieira JP, Lopes R, Nunes RG, Gonçalves SI, Lopes da Silva F, Figueiredo P. Dynamics of epileptic activity in a peculiar case of childhood absence epilepsy and correlation with thalamic levels of GABA. EPILEPSY & BEHAVIOR CASE REPORTS 2016; 5:57-65. [PMID: 27144122 PMCID: PMC4840417 DOI: 10.1016/j.ebcr.2016.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/14/2016] [Accepted: 03/25/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Childhood absence epilepsy (CAE) is a syndrome with well-defined electroclinical features but unknown pathological basis. An increased thalamic tonic GABA inhibition has recently been discovered on animal models (Cope et al., 2009), but its relevance for human CAE is unproven. METHODS We studied an 11-year-old boy, presenting the typical clinical features of CAE, but spike-wave discharges (SWD) restricted to one hemisphere. RESULTS High-resolution EEG failed to demonstrate independent contralateral hemisphere epileptic activity. Consistently, simultaneous EEG-fMRI revealed the typical thalamic BOLD activation, associated with caudate and default mode network deactivation, but restricted to the hemisphere with SWD. Cortical BOLD activations were localized on the ipsilateral pars transverse. Magnetic resonance spectroscopy, using MEGA-PRESS, showed that the GABA/creatine ratio was 2.6 times higher in the hemisphere with SWD than in the unaffected one, reflecting a higher GABA concentration. Similar comparisons for the patient's occipital cortex and thalamus of a healthy volunteer yielded asymmetries below 25%. SIGNIFICANCE In a clinical case of CAE with EEG and fMRI-BOLD manifestations restricted to one hemisphere, we found an associated increase in thalamic GABA concentration consistent with a role for this abnormality in human CAE.
Collapse
Affiliation(s)
- Alberto Leal
- Department of Neurophysiology, Centro Hospitalar Psiquiátrico de Lisboa, Lisbon, Portugal`
| | - José P Vieira
- Department of Pediatric Neurology, Hospital Dona Estefânia, Lisbon, Portugal
| | - Ricardo Lopes
- Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Rita G Nunes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Sónia I Gonçalves
- Institute of Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Fernando Lopes da Silva
- Center of Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands; Department of Bioengineering and Institute for Systems and Robotics (ISR/IST), LARSyS, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Patrícia Figueiredo
- Department of Bioengineering and Institute for Systems and Robotics (ISR/IST), LARSyS, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| |
Collapse
|
45
|
Rotondi F, Franceschetti S, Avanzini G, Panzica F. Altered EEG resting-state effective connectivity in drug-naïve childhood absence epilepsy. Clin Neurophysiol 2016; 127:1130-1137. [DOI: 10.1016/j.clinph.2015.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/08/2015] [Accepted: 09/10/2015] [Indexed: 11/16/2022]
|
46
|
Rozendaal YJW, van Luijtelaar G, Ossenblok PPW. Spatiotemporal mapping of interictal epileptiform discharges in human absence epilepsy: A MEG study. Epilepsy Res 2015; 119:67-76. [PMID: 26681490 DOI: 10.1016/j.eplepsyres.2015.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/03/2015] [Accepted: 11/13/2015] [Indexed: 01/15/2023]
Abstract
PURPOSE Although absence epilepsy is considered to be a prototypic type of generalized epilepsy, it is still under debate whether generalized 3 Hz spike-and-wave discharges (SWDs) might have a cortical focal origin. Here it is investigated whether focal interictal epileptiform discharges (IEDs), which typically occur in the electro- (EEG) and magnetoencephalogram (MEG) in case of focal epilepsy, are present in the MEG of children with absence epilepsy. Next, the location of the sources of the IEDs is established, and it is investigated whether the location is concordant to the earlier established focal cortical regions involved in the generalized SWDs of these children. METHODS Whole head MEG recordings of seven children with absence epilepsy were reviewed with respect to the presence of IEDs (spikes and sharp waves). These IEDs were grouped into distinct clusters, in which each contribution to a cluster yields a comparable magnetic field distribution. Source localization was then performed onto the average signal of each cluster using an equivalent current dipole model and a realistic head model of the cortical surface. RESULTS IEDs were detected in 6 out of 7 patients. Source reconstruction indicated most often frontal, central or parietal origins of the IED in either the left and or right hemisphere. Spatiotemporal assessment of the IEDs indicated a stable location of the averages of these discharges, indicating a single underlying cortical source. DISCUSSION The outcome of this pilot study shows that MEG is well suited for the detection of IEDs and suggests that their estimated sources coincide rather well with the cortical regions involved during the spikes of the SWDs. It is discussed whether the presence of IEDs, classically seen as a marker of focal epilepsies, indicate that absence epilepsy should be considered as a focal type of epilepsy, in which changes in the network are evolving rapidly.
Collapse
Affiliation(s)
- Yvonne J W Rozendaal
- Department Function and Medical Technology, Academic Center of Epileptology, Kempenhaeghe & Maastricht UMC+, PO Box 61, 5590AB Heeze, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven, The Netherlands.
| | - Gilles van Luijtelaar
- Donders Centre of Cognition, Radboud University, PO Box 9104, 6500HE Nijmegen, The Netherlands.
| | - Pauly P W Ossenblok
- Department Function and Medical Technology, Academic Center of Epileptology, Kempenhaeghe & Maastricht UMC+, PO Box 61, 5590AB Heeze, The Netherlands.
| |
Collapse
|
47
|
Sysoeva MV, Lüttjohann A, van Luijtelaar G, Sysoev IV. Dynamics of directional coupling underlying spike-wave discharges. Neuroscience 2015; 314:75-89. [PMID: 26633265 DOI: 10.1016/j.neuroscience.2015.11.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/31/2015] [Accepted: 11/18/2015] [Indexed: 11/24/2022]
Abstract
PURPOSE Spike and wave discharges (SWDs), generated within cortico-thalamo-cortical networks, are the electroencephalographic biomarker of absence epilepsy. The current work aims to identify mechanisms of SWD initiation, maintenance and termination by the analyses of dynamics and directionality of mutual interactions between the neocortex and various functionally different thalamic nuclei. METHODS Local-field potential recordings of 16 male Wistar Albino Glaxo from Rijswijk (WAG/Rij) rats, equipped with electrodes targeting layer 4-6 of the somatosensory cortex, rostral and caudal reticular thalamic nuclei (rRTN and cRTN), ventro-posteromedial (VPM), anterior (ATN) and posterior (PO) thalamic nuclei, were obtained. 3s epochs prior to SWD onset, after SWD onset, prior to SWD offset and after SWD offset were analyzed with newly developed time-variant adapted nonlinear Granger causality. RESULTS A gradual increase in coupling toward SWD onset between cortico-cortical pairs appears as early as 2s preictally. Next first unidirectional increase in coupling is noticed in a restricted number of cortico-thalamic and thalamo-cortical channel pairs, which turn into bidirectional coupling approaching SWD onset, and a gradual increase of intrathalamic coupling. Seizure onset is characterized by a coupling decrease for more than a second in a majority of channel pairs, only the cortex kept driving the cRTN. Intrathalamically the cRTN drives the PO, VPM and ATN. Most channel pairs no longer show differences in coupling with baseline during SWD maintenance, a major exception is the unidirectional coupling between cortex and cRTN. Toward the end of SWDs, more and more channel pairs show an increase in often bidirectional coupling, this increase suddenly vanishes at SWD offset. CONCLUSION The initiation of SWD is due to a gradual increase in intracortical coupling, followed by a selective increase in first unidirectional and later bidirectional coupling between the cortex and thalamus and also intrathalamically. Once the network is oscillating, coupling decreases in most of the channel pairs, although the cortex keeps its influence on the cRTN. The SWD is dampened by a gradual increase in coupling strength and in the number of channel pairs that influence each other; the latter might represent an endogenous brake of SWDs.
Collapse
Affiliation(s)
- M V Sysoeva
- Yuri Gagarin State Technical University of Saratov, Saratov, Russia; Saratov Branch of Kotel'nikov Institute of Radio Engineering and Electronics of RAS, Saratov, Russia.
| | - A Lüttjohann
- Institute of Physiology I, Westfälische Wilhelms University, Münster, Germany
| | - G van Luijtelaar
- Biological Psychology, Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands
| | - I V Sysoev
- Saratov State University, Saratov, Russia; Saratov Branch of Kotel'nikov Institute of Radio Engineering and Electronics of RAS, Saratov, Russia
| |
Collapse
|
48
|
Hamandi K, Routley BC, Koelewijn L, Singh KD. Non-invasive brain mapping in epilepsy: Applications from magnetoencephalography. J Neurosci Methods 2015; 260:283-91. [PMID: 26642968 DOI: 10.1016/j.jneumeth.2015.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Non-invasive in vivo neurophysiological recordings with EEG/MEG are key to the diagnosis, classification, and further understanding of epilepsy. Historically the emphasis of these recordings has been the localisation of the putative sources of epileptic discharges. More recent developments see new techniques studying oscillatory dynamics, connectivity and network properties. NEW METHOD New analysis strategies for whole head MEG include the development of spatial filters or beamformers for source localisation, time-frequency analysis for cortical dynamics and graph theory applications for connectivity. RESULTS The idea of epilepsy as a network disorder is not new, and new applications of structural and functional brain imaging show differences in cortical and subcortical networks in patients with epilepsy compared to controls. Concepts of 'focal' and 'generalised' are challenged by evidence of focal onsets in generalised epileptic discharges, and widespread network changes in focal epilepsy. Spectral analyses can show differences in induced cortical response profiles, particularly in photosensitive epilepsy. COMPARISON WITH EXISTING METHOD This review focuses on the application of MEG in the study of epilepsy, starting with a brief historical perspective, followed by novel applications of source localisation, time-frequency and connectivity analyses. CONCLUSION Novel MEG analyses approaches show altered cortical dynamics and widespread network alterations in focal and generalised epilepsies, and identification of regional network abnormalities may have a role in epilepsy surgery evaluation.
Collapse
Affiliation(s)
- Khalid Hamandi
- The Alan Richens Welsh Epilepsy Centre, University Hospital of Wales, Cardiff CF5 6LR, United Kingdom.
| | - Bethany C Routley
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Loes Koelewijn
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
49
|
Tang L, Xiang J, Huang S, Miao A, Ge H, Liu H, Wu D, Guan Q, Wu T, Chen Q, Yang L, Lu X, Hu Z, Wang X. Neuromagnetic high-frequency oscillations correlate with seizure severity in absence epilepsy. Clin Neurophysiol 2015; 127:1120-1129. [PMID: 26384756 DOI: 10.1016/j.clinph.2015.08.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/15/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This study quantified the clinical correlation of interictal and ictal neuromagnetic activities from low- to very-high-frequency ranges in childhood absence epilepsy (CAE). METHODS Twelve patients with clinically diagnosed drug-naïve CAE were studied using a 275-channel whole-head magnetoencephalography (MEG) system. MEG data were digitized at 6000 Hz and analyzed at both sensor and source levels with multi-frequency analyses. RESULTS Neuromagnetic changes from interictal to ictal periods predominantly occurred in medial prefrontal cortex and parieto-occipito-temporal junction in absence seizures. The changes were statistically significant in low-frequency bands only (<30 Hz, p<0.0001). There was a significant correlation between the source strength of ictal high-frequency oscillations (HFOs) in 200-1000 Hz and the number of daily seizures (r=0.734, p<0.01). CONCLUSIONS CAE has focal neuromagnetic sources. The transition from interictal to ictal periods is associated with the elevation of low-frequency brain activities. The strength of HFOs reflects the severity of absence seizures. SIGNIFICANCE Low- and high-frequency MEG signals reveal distinct brain activities in CAE. HFOs is a new biomarker for the study of absence seizures.
Collapse
Affiliation(s)
- Lu Tang
- Department of Neurology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, Jiangsu 210029, China
| | - Jing Xiang
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA
| | - Shuyang Huang
- Department of Neurology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, Jiangsu 210029, China
| | - Ailiang Miao
- Department of Neurology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, Jiangsu 210029, China
| | - Huaiting Ge
- Department of Neurology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, Jiangsu 210029, China
| | - Hongxing Liu
- Department of Neurology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, Jiangsu 210029, China
| | - Di Wu
- Department of Neurology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, Jiangsu 210029, China
| | - Qingshan Guan
- Department of Neurology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, Jiangsu 210029, China
| | - Ting Wu
- MEG Center, Nanjing Brain Hospital, Nanjing, Jiangsu 210029, China
| | - Qiqi Chen
- MEG Center, Nanjing Brain Hospital, Nanjing, Jiangsu 210029, China
| | - Lu Yang
- MEG Center, Nanjing Brain Hospital, Nanjing, Jiangsu 210029, China
| | - Xiaopeng Lu
- Department of Neurology, Nanjing Children's Hospital, Nanjing, Jiangsu 210029, China
| | - Zheng Hu
- Department of Neurology, Nanjing Children's Hospital, Nanjing, Jiangsu 210029, China
| | - Xiaoshan Wang
- Department of Neurology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
50
|
Chaitanya G, Sinha S, Narayanan M, Satishchandra P. Scalp high frequency oscillations (HFOs) in absence epilepsy: An independent component analysis (ICA) based approach. Epilepsy Res 2015. [DOI: 10.1016/j.eplepsyres.2015.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|