1
|
Smotrova E, Li S, Silberschmidt VV. Mechanoregulated trabecular bone adaptation: Progress report on in silico approaches. BIOMATERIALS AND BIOSYSTEMS 2022; 7:100058. [PMID: 36824485 PMCID: PMC9934474 DOI: 10.1016/j.bbiosy.2022.100058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022] Open
Abstract
Adaptation is the process by which bone responds to changes in loading environment and modulates its properties and spatial organization to meet the mechanical demands. Adaptation in trabecular bone is achieved through increase in bone mass and alignment of trabecular-bone morphology along the loading direction. This transformation of internal microstructure is governed by mechanical stimuli sensed by mechanosensory cells in the bone matrix. Realisation of adaptation in the form of local bone-resorption and -formation activities as a function of mechanical stimuli is still debated. In silico modelling is a useful tool for simulation of various scenarios that cannot be investigated in vivo and particularly well suited for prediction of trabecular bone adaptation. This progress report presents the recent advances in in silico modelling of mechanoregulated adaptation at the scale of trabecular bone tissue. Four well-established bone-adaptation models are reviewed in terms of their recent improvements and validation. They consider various mechanical factors: (i) strain energy density, (ii) strain and damage, (iii) stress nonuniformity and (iv) daily stress. Contradictions of these models are discussed and their ability to describe adequately a real-life mechanoregulation process in bone is compared.
Collapse
|
2
|
Müller R, Henss A, Kampschulte M, Rohnke M, Langheinrich AC, Heiss C, Janek J, Voigt A, Wilke HJ, Ignatius A, Herfurth J, El Khassawna T, Deutsch A. Analysis of microscopic bone properties in an osteoporotic sheep model: a combined biomechanics, FE and ToF-SIMS study. J R Soc Interface 2020; 16:20180793. [PMID: 30958193 DOI: 10.1098/rsif.2018.0793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The present study deals with the characterization of bone quality in a sheep model of postmenopausal osteoporosis. Sheep were sham operated ( n = 7), ovariectomized ( n = 6), ovariectomized and treated with deficient diet ( n = 8) or ovariectomized, treated with deficient diet and glucocorticoid injections ( n = 7). The focus of the study is on the microscopic properties at tissue level. Microscopic mechanical properties of osteoporotic bone were evaluated by a combination of biomechanical testing and mathematical modelling. Sample stiffness and strength were determined by compression tests and finite-element analysis of stress states was conducted. From this, an averaged microscopic Young's modulus at tissue level was determined. Trabecular structure as well as mineral and collagen distribution in samples of sheep vertebrae were analysed by micro-computed tomography and time-of-flight secondary ion mass spectrometry. In the osteoporotic sheep model, a disturbed fibril structure in the triple treated group was observed, but bone loss only occurred in form of reduced trabecular number and thickness and cortical decline, while quality of the residual bone was preserved. The preserved bone tissue properties in the osteoporotic sheep model allowed for an estimation of bone strength which behaves similar to the human case.
Collapse
Affiliation(s)
- R Müller
- 1 Centre for Information Services and High Performance Computing , TU Dresden, 01062 Dresden , Germany
| | - A Henss
- 2 Institute of Physical Chemistry and Center for Materials Research (ZfM/LaMa), Justus-Liebig University of Giessen , 35392 Giessen , Germany
| | - M Kampschulte
- 4 Department of Diagnostic and Interventional Radiology, University Hospital of Giessen-Marburg , 35392 Giessen , Germany
| | - M Rohnke
- 2 Institute of Physical Chemistry and Center for Materials Research (ZfM/LaMa), Justus-Liebig University of Giessen , 35392 Giessen , Germany
| | - A C Langheinrich
- 6 Department of Diagnostic and Interventional Radiology, BG Trauma Hospital , 60389 Frankfurt/Main , Germany
| | - C Heiss
- 3 Experimental Trauma Surgery, Justus-Liebig University of Giessen , 35392 Giessen , Germany.,5 Department of Trauma, Hand, and Reconstructive Surgery, University Hospital of Giessen-Marburg , Giessen , Germany
| | - J Janek
- 2 Institute of Physical Chemistry and Center for Materials Research (ZfM/LaMa), Justus-Liebig University of Giessen , 35392 Giessen , Germany
| | - A Voigt
- 8 Institute of Scientific Computing , TU Dresden, 01062 Dresden , Germany
| | - H J Wilke
- 7 Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University-Medical Centre , Ulm , Germany
| | - A Ignatius
- 7 Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University-Medical Centre , Ulm , Germany
| | - J Herfurth
- 3 Experimental Trauma Surgery, Justus-Liebig University of Giessen , 35392 Giessen , Germany
| | - T El Khassawna
- 3 Experimental Trauma Surgery, Justus-Liebig University of Giessen , 35392 Giessen , Germany
| | - A Deutsch
- 1 Centre for Information Services and High Performance Computing , TU Dresden, 01062 Dresden , Germany
| |
Collapse
|
3
|
Cai L, Zhang Y, Zheng W, Wang J, Guo X, Feng Y. A novel percutaneous crossed screws fixation in treatment of Day type II crescent fracture-dislocation: A finite element analysis. J Orthop Translat 2019; 20:37-46. [PMID: 31908932 PMCID: PMC6939110 DOI: 10.1016/j.jot.2019.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 11/29/2022] Open
Abstract
Objective Day type II crescent fracture–dislocation is a subtype of pelvic lateral compression injury. At present, there is still a controversy on the operative approach and fixation technique. We have put forward closed reduction and percutaneous crossed screws fixation for treating type-II crescent fracture–dislocation. Finite element analysis is used to compare the biomechanical properties between percutaneous crossed screws and other internal fixations. Methods A three-dimensional finite element model of Day type-II crescent fracture–dislocation was simulated using 5 implants, including double anterior plates (Model A), one posterior plate and one iliac screw (Model B), one sacroiliac joint screw (Model C), crossed one iliac screw and one sacroiliac joint screw (Model D), and crossed two iliac screws and one sacroiliac joint screw (Model E). 600-N stress was applied to S1 vertebral end-plate. To evaluate the biomechanical properties, the stress distribution and displacement distribution of the pelvis, stress distribution of the crescent fragment and stress distribution of plate and cannulated screw were recorded and analyzed. Results Under the loading of 600N, the maximum pelvic displacements in the finite element model were compared as follows: model E (0.070 mm), model D (0.071 mm), model A (0.080 mm), model C (0.096 mm), and model B (0.112 mm). The maximum displacements of crescent fragment were compared as follows: model E (0.018 mm), model B (0.022 mm), model D (0.023 mm), model A (0.030 mm), and model C (0.043 mm). The maximum stress of all implants were compared as follows: model D (90.01 Mpa), model E (81.60 Mpa), model C (69.07 Mpa), model A (56.51 Mpa), model B (18.29 Mpa). Model E and model D could provide better mechanical support for whole pelvic. Conclusions With sufficient biomechanical stability and minimally invasive advantage, percutaneous crossed screw fixation is a recommended treatment for Day Type-II Crescent Fracture–dislocation. It is recommended to fix crescent fracture fragment and sacroiliac joint simultaneously during the operation. If it is difficult to fix the both position, the sacroiliac joint is preferentially fixed. The translational potential of this article There is a controversy on the operative approach and fixation technique of Day type-II crescent fracture–dislocation. This article proves that percutaneous crossed screw fixation is a recommended treatment for Day type-II crescent fracture–dislocation by finite element analysis.
Collapse
Affiliation(s)
- Leyi Cai
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, NO.109, XueYuan West Road, Luheng District, Wenzhou, Zhejiang Province, 325000, PR China
| | - Yingying Zhang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University. NO.109, XueYuan West Road, Luheng District, Wenzhou, Zhejiang Province, 325000, PR China
| | - Wenhao Zheng
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, NO.109, XueYuan West Road, Luheng District, Wenzhou, Zhejiang Province, 325000, PR China
| | - Jianshun Wang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, NO.109, XueYuan West Road, Luheng District, Wenzhou, Zhejiang Province, 325000, PR China
| | - Xiaoshan Guo
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, NO.109, XueYuan West Road, Luheng District, Wenzhou, Zhejiang Province, 325000, PR China
| | - Yongzeng Feng
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, NO.109, XueYuan West Road, Luheng District, Wenzhou, Zhejiang Province, 325000, PR China
| |
Collapse
|
4
|
Solitro GF, Mainnemare F, Amirouche F, Mehta A. A novel technique with reduced computed tomography exposure to predict vertebral compression fracture: a finite element study based on rat vertebrae. Med Biol Eng Comput 2018; 57:795-805. [PMID: 30402789 DOI: 10.1007/s11517-018-1918-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 10/21/2018] [Indexed: 10/27/2022]
Abstract
Vertebral compression fractures are a significant clinical issue with an annual incidence of approximately 750,000 cases in the USA alone. Mechanical properties of vertebrae are successfully evaluated through finite element (FE) models based on vertebrae CT. However, clinical drawbacks associated to radiation transmission encouraged to explore the possibility to use selected or reduced portions of the vertebra. The objective of our study was to develop a new procedure to predict vertebral compression fracture from sub-volumes. We reconstructed rat vertebras from micro-CT of thoracic and lumbar groups. Each vertebra was partitioned into three sub-volumes of different axial thickness. FE simulating compression tests were performed on each model to evaluate their failure load and stiffness. Using a power function, a high correlation was found for stiffness and strength. The sub-volume with three fifths thickness had a failure load of 180.7 ± 19.2 N for thoracic and of 209.5 ± 27.4 N for the lumbar vertebra. These values were not significantly different from the values found for the entire vertebra (p > 0.05). Based on our findings, failure loads and stiffnesses obtained with reduced CT scans can be successfully used to predict full vertebral failure. This sub-region analysis and power relationship suggests that one can limit radiation exposure to patients when bone characterization is needed. Graphical abstract Estimated mechanical properties in relation to the extent of the computed tomography reconstruction.
Collapse
Affiliation(s)
- Giovanni F Solitro
- Department of Orthopaedics, University of Illinois at Chicago, 835 S. Wolcott Avenue, Room E270, Chicago, IL, 60612, USA.,Department of Orthopaedic Surgery, Louisiana State University Health Science Center of Shreveport, 1501 Kings Hwy, Room 3-317, Shreveport, LA, 71104, USA
| | - Florian Mainnemare
- Department of Mechanical Engineering, ENS Cachan, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235, Cachan, France
| | - Farid Amirouche
- Department of Orthopaedics, University of Illinois at Chicago, 835 S. Wolcott Avenue, Room E270, Chicago, IL, 60612, USA.
| | - Ankit Mehta
- Department of Neurosurgery, University of Illinois at Chicago, 912 S Wood St, Chicago, IL, USA
| |
Collapse
|
5
|
Clough BH, Zeitouni S, Krause U, Chaput CD, Cross LM, Gaharwar AK, Gregory CA. Rapid Osteogenic Enhancement of Stem Cells in Human Bone Marrow Using a Glycogen-Synthease-Kinase-3-Beta Inhibitor Improves Osteogenic Efficacy In Vitro and In Vivo. Stem Cells Transl Med 2018; 7:342-353. [PMID: 29405665 PMCID: PMC5866944 DOI: 10.1002/sctm.17-0229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/06/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022] Open
Abstract
Non‐union defects of bone are a major problem in orthopedics, especially for patients with a low healing capacity. Fixation devices and osteoconductive materials are used to provide a stable environment for osteogenesis and an osteogenic component such as autologous human bone marrow (hBM) is then used, but robust bone formation is contingent on the healing capacity of the patients. A safe and rapid procedure for improvement of the osteoanabolic properties of hBM is, therefore, sought after in the field of orthopedics, especially if it can be performed within the temporal limitations of the surgical procedure, with minimal manipulation, and at point‐of‐care. One way to achieve this goal is to stimulate canonical Wingless (cWnt) signaling in bone marrow‐resident human mesenchymal stem cells (hMSCs), the presumptive precursors of osteoblasts in bone marrow. Herein, we report that the effects of cWnt stimulation can be achieved by transient (1–2 hours) exposure of osteoprogenitors to the GSK3β‐inhibitor (2′Z,3′E)‐6‐bromoindirubin‐3′‐oxime (BIO) at a concentration of 800 nM. Very‐rapid‐exposure‐to‐BIO (VRE‐BIO) on either hMSCs or whole hBM resulted in the long‐term establishment of an osteogenic phenotype associated with accelerated alkaline phosphatase activity and enhanced transcription of the master regulator of osteogenesis, Runx2. When VRE‐BIO treated hBM was tested in a rat spinal fusion model, VRE‐BIO caused the formation of a denser, stiffer, fusion mass as compared with vehicle treated hBM. Collectively, these data indicate that the VRE‐BIO procedure may represent a rapid, safe, and point‐of‐care strategy for the osteogenic enhancement of autologous hBM for use in clinical orthopedic procedures. stemcellstranslationalmedicine2018;7:342–353
Collapse
Affiliation(s)
- Bret H Clough
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Suzanne Zeitouni
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Ulf Krause
- Institute for Transfusion Medicine and Transplant Immunology, University Hospital Muenster, Muenster, Germany
| | - Christopher D Chaput
- Department of Orthopedic Surgery, Baylor Scott and White Hospital, Temple, Texas, USA
| | - Lauren M Cross
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Material Sciences, College Station, Texas, USA.,Center for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas, USA
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
6
|
Elastic Modulus of Osteoporotic Mouse Femur Based on Femoral Head Compression Test. Appl Bionics Biomech 2017; 2017:7201769. [PMID: 29375244 PMCID: PMC5742509 DOI: 10.1155/2017/7201769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/09/2017] [Indexed: 11/18/2022] Open
Abstract
A biomechanical test is a good evaluation method that describes the structural, functional, and pathological differences in the bones, such as osteoporosis and fracture. The tensile test, compression test, and bending test are generally performed to evaluate the elastic modulus of the bone using mice. In particular, the femoral head compression test is mainly used for verifying the osteoporosis change of the femoral neck. This study conducted bone mineral density analysis using in vivo microcomputed tomography (micro-CT) to observe changes in osteoporosis over time. It proposed a method of identifying the elastic modulus of the femur in the normal group (CON group) and the osteoporotic group (OVX group) through finite element analysis based on the femoral head compression test and also conducted a comparative analysis of the results. Through the femoral head compression test, it was verified that the CON group's ultimate and yield loads were significantly higher than those of the OVX group. It was considered that this result was caused by the fact that the bone mineral density change by osteoporosis occurred in the proximal end more often than in the femur diaphysis. However, the elastic modulus derived from the finite element analysis showed no significant difference between the two groups.
Collapse
|
7
|
Saul D, Gleitz S, Nguyen HH, Kosinsky RL, Sehmisch S, Hoffmann DB, Wassmann M, Menger B, Komrakova M. Effect of the lipoxygenase-inhibitors baicalein and zileuton on the vertebra in ovariectomized rats. Bone 2017; 101:134-144. [PMID: 28455215 DOI: 10.1016/j.bone.2017.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 12/25/2022]
Abstract
Osteoporosis is one of the most common diseases worldwide. In osteoporosis, vertebral fractures represent a major burden. Lipoxygenase (LOX) inhibitors such as baicalein and zileuton may represent a promising therapeutic option owing to their antioxidative effects and suppression of various inflammatory processes in muscle and bone. The effect of these LOX inhibitors on the spine was studied in osteopenic rats. Female Sprague-Dawley rats were divided two times into five groups: four groups each were ovariectomized (OVX) and one control group was non-ovariectomized (NON-OVX). Eight weeks after ovariectomy, three concentrations of baicalein (1mg/kg body weight [BW], 10mg/kgBW, and 100mg/kgBW) were administered subcutaneously daily in three OVX groups for 4weeks. Similarly, zileuton was administered in three concentrations via food for 5weeks. In vivo computed tomography (pQCT) of the spine was performed before the treatments and at the end of the experiment. Lumbar vertebrae were subjected to a compression test, micro-CT, and ashing analyses. After baicalein treatment, cortical bone mineral density (BMD) was improved; trabecular connectivity and trabecular BMD were diminished at high dose. After zileuton treatment, the total BMD, anorganic weight, trabecular nodes, and trabecular area were improved. The in vivo stress-strain index was increased and alkaline phosphatase activity in serum was enhanced after both treatments. A dose-dependent effect was not clearly observed after both treatments. The treatments using baicalein for 4 and zileuton for 5weeks were not sufficient to change the biomechanical properties and bone volume fraction (BV/TV). Overall, baicalein improved the cortical bone parameters whereas zileuton had a favorable effect on the trabecular structure. Moreover, both treatments increased the bone formation rate. Longer trials, a combination of both LOX inhibitors, and their effect at the cellular and molecular levels should be investigated in further studies.
Collapse
Affiliation(s)
- D Saul
- Department of Trauma, Orthopaedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany.
| | - S Gleitz
- Department of Trauma, Orthopaedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| | - H H Nguyen
- Department of Trauma, Orthopaedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| | - R L Kosinsky
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - S Sehmisch
- Department of Trauma, Orthopaedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| | - D B Hoffmann
- Department of Trauma, Orthopaedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| | - M Wassmann
- Medical Institute of General Hygiene and Environmental Health, University of Goettingen, 37075 Goettingen, Germany
| | - B Menger
- Department of Trauma, Orthopaedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| | - M Komrakova
- Department of Trauma, Orthopaedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| |
Collapse
|
8
|
Xu W, Xu J, Zhao J, Sun J. Quantitative study of osteoporosis model based on synchrotron radiation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:6378-81. [PMID: 26737752 DOI: 10.1109/embc.2015.7319852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To investigate the changes of different periods of primary osteoporosis, we made quantitative analysis of osteoporosis using synchrotron radiation computed tomography (SRCT), together with histomorphometry analysis and finite element analysis (FEA). Tibias, femurs and lumbar vertebras were dissected from sham-ovariectomy rats and ovariectomized rats suffering from osteoporosis at certain time points. The samples were scanned by SRCT and then FEA was applied based on reconstructed slices. Histomorphometry analysis showed that the structure of some trabecular in osteoporosis degraded as the bone volume decreased, for femurs, the bone volume fraction (BV/TV) decreased from 69% to 43%. That led to the increase of the thickness of trabecular separation (from 45.05μm to 97.09μm) and the reduction of the number of trabecular (from 7.99 mm(-1) to 5.97mm(-1)). Simulation of various mechanical tests indicated that, with the exacerbation of osteoporosis, the bones' ability of resistance to compression, bending and torsion gradually became weaker. The compression stiffness decreased from 1770.96 Fμm(-1) to 697.41 Fμm(-1), and it matched the histomorphometry analysis. This study suggested that the combination of both analysis could quantitatively analyze the bone strength in good accuracy.
Collapse
|
9
|
Oksztulska-Kolanek E, Znorko B, Michałowska M, Pawlak K. The Biomechanical Testing for the Assessment of Bone Quality in an Experimental Model of Chronic Kidney Disease. Nephron Clin Pract 2015; 132:51-8. [DOI: 10.1159/000442714] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/30/2015] [Indexed: 11/19/2022] Open
|
10
|
El Khassawna T, Böcker W, Brodsky K, Weisweiler D, Govindarajan P, Kampschulte M, Thormann U, Henss A, Rohnke M, Bauer N, Müller R, Deutsch A, Ignatius A, Dürselen L, Langheinrich A, Lips KS, Schnettler R, Heiss C. Impaired extracellular matrix structure resulting from malnutrition in ovariectomized mature rats. Histochem Cell Biol 2015. [PMID: 26210855 DOI: 10.1007/s00418-015-1356-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bone loss is a symptom related to disease and age, which reflects on bone cells and ECM. Discrepant regulation affects cell proliferation and ECM localization. Rat model of osteoporosis (OVX) was investigated against control rats (Sham) at young and old ages. Biophysical, histological and molecular techniques were implemented to examine the underlying cellular and extracellular matrix changes and to assess the mechanisms contributing to bone loss in the context of aging and the widely used osteoporotic models in rats. Bone loss exhibited a compromised function of bone cells and infiltration of adipocytes into bone marrow. However, the expression of genes regulating collagen catabolic process and adipogenesis was chronologically shifted in diseased bone in comparison with aged bone. The data showed the involvement of Wnt signaling inhibition in adipogenesis and bone loss due to over-expression of SOST in both diseased and aged bone. Further, in the OVX animals, an integrin-mediated ERK activation indicated the role of MAPK in osteoblastogenesis and adipogenesis. The increased PTH levels due to calcium and estrogen deficiency activated osteoblastogenesis. Thusly, RANKL-mediated osteoclastogenesis was initiated. Interestingly, the data show the role of MEPE regulating osteoclast-mediated resorption at late stages in osteoporotic bone. The interplay between ECM and bone cells change tissue microstructure and properties. The involvement of Wnt and MAPK pathways in activating cell proliferation has intriguing similarities to oncogenesis and myeloma. The study indicates the importance of targeting both pathways simultaneously to remedy metabolic bone diseases and age-related bone loss.
Collapse
Affiliation(s)
- Thaqif El Khassawna
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Giessen, Germany.
| | - Wolfgang Böcker
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Giessen, Germany. .,Department of Trauma Surgery, University Hospital of Giessen-Marburg, Rudolf-Buchheim-Strasse 7, 35385, Giessen, Germany.
| | - Katharina Brodsky
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Giessen, Germany.
| | - David Weisweiler
- Department of Trauma Surgery, University Hospital of Giessen-Marburg, Rudolf-Buchheim-Strasse 7, 35385, Giessen, Germany.
| | | | - Marian Kampschulte
- Department of Radiology, University Hospital of Giessen-Marburg, Giessen, Germany.
| | - Ulrich Thormann
- Department of Trauma Surgery, University Hospital of Giessen-Marburg, Rudolf-Buchheim-Strasse 7, 35385, Giessen, Germany.
| | - Anja Henss
- Institute for Physical Chemistry, Justus-Liebig-University of Giessen, Giessen, Germany.
| | - Marcus Rohnke
- Institute for Physical Chemistry, Justus-Liebig-University of Giessen, Giessen, Germany.
| | - Natali Bauer
- Department of Veterinary Clinical Sciences, Clinical Pathology and Clinical Pathophysiology, Justus-Liebig University Giessen, Giessen, Germany.
| | - Robert Müller
- Center for Information Services and High Performance Computing, TU Dresden, Dresden, Germany.
| | - Andreas Deutsch
- Center for Information Services and High Performance Computing, TU Dresden, Dresden, Germany.
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Centre of Musculoskeletal Research, University of Ulm, Ulm, Germany.
| | - Lutz Dürselen
- Institute of Orthopedic Research and Biomechanics, Centre of Musculoskeletal Research, University of Ulm, Ulm, Germany.
| | - Alexander Langheinrich
- Department of Diagnostic and Interventional Radiology, BG Trauma Hospital Frankfurt/Main, Frankfurt, Germany.
| | - Katrin S Lips
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Giessen, Germany.
| | - Reinhard Schnettler
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Giessen, Germany. .,Department of Trauma Surgery, University Hospital of Giessen-Marburg, Rudolf-Buchheim-Strasse 7, 35385, Giessen, Germany.
| | - Christian Heiss
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Giessen, Germany. .,Department of Trauma Surgery, University Hospital of Giessen-Marburg, Rudolf-Buchheim-Strasse 7, 35385, Giessen, Germany.
| |
Collapse
|
11
|
Chappard D, Stancu IC. Porosity imaged by a vector projection algorithm correlates with fractal dimension measured on 3D models obtained by microCT. J Microsc 2014; 258:24-30. [PMID: 25556606 DOI: 10.1111/jmi.12212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/02/2014] [Indexed: 11/28/2022]
Abstract
Porosity is an important factor to consider in a large variety of materials. Porosity can be visualized in bone or 3D synthetic biomaterials by microcomputed tomography (microCT). Blocks of porous poly(2-hydroxyethyl methacrylate) were prepared with polystyrene beads of different diameter (500, 850, 1160 and 1560 μm) and analysed by microCT. On each 2D binarized microCT section, pixels of the pores which belong to the same image column received the same pseudo-colour according to a look up table. The same colour was applied on the same column of a frontal plane image which was constructed line by line from all images of the microCT stack. The fractal dimension Df of the frontal plane image was measured as well as the descriptors of the 3D models (porosity, 3D fractal dimension D3D, thickness, density and separation of material walls. Porosity, thickness Df and D3D increased with the size of the porogen beads. A linear correlation was observed between Df and D3D. This method provides quantitative and qualitative analysis of porosity on a single frontal plane image of a porous object.
Collapse
Affiliation(s)
- Daniel Chappard
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 Angers, Cedex, France
| | | |
Collapse
|