1
|
Song B, Gu Y, Jiang W, Li Y, Ayre WN, Liu Z, Yin T, Janetopoulos C, Iijima M, Devreotes P, Zhao M. Electric signals counterbalanced posterior vs anterior PTEN signaling in directed migration of Dictyostelium. Cell Biosci 2021; 11:111. [PMID: 34127068 PMCID: PMC8201722 DOI: 10.1186/s13578-021-00580-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
Background Cells show directed migration response to electric signals, namely electrotaxis or galvanotaxis. PI3K and PTEN jointly play counterbalancing roles in this event via a bilateral regulation of PIP3 signaling. PI3K has been proved essential in anterior signaling of electrotaxing cells, whilst the role of PTEN remains elusive. Methods Dictyostelium cells with different genetic backgrounds were treated with direct current electric signals to investigate the genetic regulation of electrotaxis. Results We demonstrated that electric signals promoted PTEN phosphatase activity and asymmetrical translocation to the posterior plasma membrane of the electrotaxing cells. Electric stimulation produced a similar but delayed rear redistribution of myosin II, immediately before electrotaxis started. Actin polymerization is required for the asymmetric membrane translocation of PTEN and myosin. PTEN signaling is also responsible for the asymmetric anterior redistribution of PIP3/F-actin, and a biased redistribution of pseudopod protrusion in the forwarding direction of electrotaxing cells. Conclusions PTEN controls electrotaxis by coordinately regulating asymmetric redistribution of myosin to the posterior, and PIP3/F-actin to the anterior region of the directed migration cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00580-x.
Collapse
Affiliation(s)
- Bing Song
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK. .,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| | - Yu Gu
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK
| | - Wenkai Jiang
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Ying Li
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK.,Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, Tianjin, China
| | - Wayne Nishio Ayre
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK
| | - Zhipeng Liu
- Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, Tianjin, China
| | - Tao Yin
- Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, Tianjin, China
| | | | - Miho Iijima
- School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Peter Devreotes
- School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Min Zhao
- Department of Ophthalmology & Vision Science, UC Davis, School of Medicine, Davis, CA, 95618, USA. .,Department of Dermatology, UC Davis, School of Medicine, Davis, CA, 95618, USA.
| |
Collapse
|
2
|
Metwally S, Stachewicz U. Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109883. [DOI: 10.1016/j.msec.2019.109883] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/02/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
|
3
|
Abdul Kadir L, Stacey M, Barrett-Jolley R. Emerging Roles of the Membrane Potential: Action Beyond the Action Potential. Front Physiol 2018; 9:1661. [PMID: 30519193 PMCID: PMC6258788 DOI: 10.3389/fphys.2018.01661] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/02/2018] [Indexed: 01/03/2023] Open
Abstract
Whilst the phenomenon of an electrical resting membrane potential (RMP) is a central tenet of biology, it is nearly always discussed as a phenomenon that facilitates the propagation of action potentials in excitable tissue, muscle, and nerve. However, as ion channel research shifts beyond these tissues, it became clear that the RMP is a feature of virtually all cells studied. The RMP is maintained by the cell’s compliment of ion channels. Transcriptome sequencing is increasingly revealing that equally rich compliments of ion channels exist in both excitable and non-excitable tissue. In this review, we discuss a range of critical roles that the RMP has in a variety of cell types beyond the action potential. Whereas most biologists would perceive that the RMP is primarily about excitability, the data show that in fact excitability is only a small part of it. Emerging evidence show that a dynamic membrane potential is critical for many other processes including cell cycle, cell-volume control, proliferation, muscle contraction (even in the absence of an action potential), and wound healing. Modulation of the RMP is therefore a potential target for many new drugs targeting a range of diseases and biological functions from cancer through to wound healing and is likely to be key to the development of successful stem cell therapies.
Collapse
Affiliation(s)
- Lina Abdul Kadir
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Michael Stacey
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Richard Barrett-Jolley
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
4
|
Teal PD, Ni G. Finite element modelling of cochlear electrical coupling. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:2769. [PMID: 27794298 DOI: 10.1121/1.4964897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The operation of each hair cell within the cochlea generates a change in electrical potential at the frequency of the vibrating basilar membrane beneath the hair cell. This electrical potential influences the operation of the cochlea at nearby locations and can also be detected as the cochlear microphonic signal. The effect of such potentials has been proposed as a mechanism for the non-local operation of the cochlear amplifier, and the interaction of such potentials has been thought to be the cause of the broadness of cochlea microphonic tuning curves. The spatial extent of influence of these potentials is an important parameter for determining the significance of their effects. Calculations of this extent have typically been based on calculating the longitudinal resistance of each of the scalae from the scala cross sectional area, and the conductivity of the lymph. In this paper, the range of influence of the electrical potential is examined using an electrical finite element model. It is found that the range of influence of the hair cell potential is much shorter than the conventional calculation, but is consistent with recent measurements.
Collapse
Affiliation(s)
- Paul D Teal
- School of Engineering and Computer Science, Victoria University of Wellington, Kelburn Parade, Wellington 6140, New Zealand
| | - Guangjian Ni
- Institute of Sound and Vibration Research, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|