2
|
Biswas S, Khan MIA, Hossain MT, Biswas A, Nakai T, Rohdin J. Which Color Channel Is Better for Diagnosing Retinal Diseases Automatically in Color Fundus Photographs? LIFE (BASEL, SWITZERLAND) 2022; 12:life12070973. [PMID: 35888063 PMCID: PMC9321111 DOI: 10.3390/life12070973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
Abstract
Color fundus photographs are the most common type of image used for automatic diagnosis of retinal diseases and abnormalities. As all color photographs, these images contain information about three primary colors, i.e., red, green, and blue, in three separate color channels. This work aims to understand the impact of each channel in the automatic diagnosis of retinal diseases and abnormalities. To this end, the existing works are surveyed extensively to explore which color channel is used most commonly for automatically detecting four leading causes of blindness and one retinal abnormality along with segmenting three retinal landmarks. From this survey, it is clear that all channels together are typically used for neural network-based systems, whereas for non-neural network-based systems, the green channel is most commonly used. However, from the previous works, no conclusion can be drawn regarding the importance of the different channels. Therefore, systematic experiments are conducted to analyse this. A well-known U-shaped deep neural network (U-Net) is used to investigate which color channel is best for segmenting one retinal abnormality and three retinal landmarks.
Collapse
Affiliation(s)
- Sangeeta Biswas
- Faculty of Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.I.A.K.); (M.T.H.)
- Correspondence: or
| | - Md. Iqbal Aziz Khan
- Faculty of Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.I.A.K.); (M.T.H.)
| | - Md. Tanvir Hossain
- Faculty of Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.I.A.K.); (M.T.H.)
| | - Angkan Biswas
- CAPM Company Limited, Bonani, Dhaka 1213, Bangladesh;
| | - Takayoshi Nakai
- Faculty of Engineering, Shizuoka University, Hamamatsu 432-8561, Japan;
| | - Johan Rohdin
- Faculty of Information Technology, Brno University of Technology, 61200 Brno, Czech Republic;
| |
Collapse
|
5
|
Porwal P, Pachade S, Kokare M, Deshmukh G, Son J, Bae W, Liu L, Wang J, Liu X, Gao L, Wu T, Xiao J, Wang F, Yin B, Wang Y, Danala G, He L, Choi YH, Lee YC, Jung SH, Li Z, Sui X, Wu J, Li X, Zhou T, Toth J, Baran A, Kori A, Chennamsetty SS, Safwan M, Alex V, Lyu X, Cheng L, Chu Q, Li P, Ji X, Zhang S, Shen Y, Dai L, Saha O, Sathish R, Melo T, Araújo T, Harangi B, Sheng B, Fang R, Sheet D, Hajdu A, Zheng Y, Mendonça AM, Zhang S, Campilho A, Zheng B, Shen D, Giancardo L, Quellec G, Mériaudeau F. IDRiD: Diabetic Retinopathy - Segmentation and Grading Challenge. Med Image Anal 2019; 59:101561. [PMID: 31671320 DOI: 10.1016/j.media.2019.101561] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
Diabetic Retinopathy (DR) is the most common cause of avoidable vision loss, predominantly affecting the working-age population across the globe. Screening for DR, coupled with timely consultation and treatment, is a globally trusted policy to avoid vision loss. However, implementation of DR screening programs is challenging due to the scarcity of medical professionals able to screen a growing global diabetic population at risk for DR. Computer-aided disease diagnosis in retinal image analysis could provide a sustainable approach for such large-scale screening effort. The recent scientific advances in computing capacity and machine learning approaches provide an avenue for biomedical scientists to reach this goal. Aiming to advance the state-of-the-art in automatic DR diagnosis, a grand challenge on "Diabetic Retinopathy - Segmentation and Grading" was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI - 2018). In this paper, we report the set-up and results of this challenge that is primarily based on Indian Diabetic Retinopathy Image Dataset (IDRiD). There were three principal sub-challenges: lesion segmentation, disease severity grading, and localization of retinal landmarks and segmentation. These multiple tasks in this challenge allow to test the generalizability of algorithms, and this is what makes it different from existing ones. It received a positive response from the scientific community with 148 submissions from 495 registrations effectively entered in this challenge. This paper outlines the challenge, its organization, the dataset used, evaluation methods and results of top-performing participating solutions. The top-performing approaches utilized a blend of clinical information, data augmentation, and an ensemble of models. These findings have the potential to enable new developments in retinal image analysis and image-based DR screening in particular.
Collapse
Affiliation(s)
- Prasanna Porwal
- Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded, India; School of Biomedical Informatics, University of Texas Health Science Center at Houston, USA.
| | - Samiksha Pachade
- Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded, India; School of Biomedical Informatics, University of Texas Health Science Center at Houston, USA
| | - Manesh Kokare
- Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded, India
| | | | | | | | - Lihong Liu
- Ping An Technology (Shenzhen) Co.,Ltd, China
| | | | - Xinhui Liu
- Ping An Technology (Shenzhen) Co.,Ltd, China
| | | | - TianBo Wu
- Ping An Technology (Shenzhen) Co.,Ltd, China
| | - Jing Xiao
- Ping An Technology (Shenzhen) Co.,Ltd, China
| | | | | | - Yunzhi Wang
- School of Electrical and Computer Engineering, University of Oklahoma, USA
| | - Gopichandh Danala
- School of Electrical and Computer Engineering, University of Oklahoma, USA
| | - Linsheng He
- School of Electrical and Computer Engineering, University of Oklahoma, USA
| | - Yoon Ho Choi
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Yeong Chan Lee
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Sang-Hyuk Jung
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Zhongyu Li
- Department of Computer Science, University of North Carolina at Charlotte, USA
| | - Xiaodan Sui
- School of Information Science and Engineering, Shandong Normal University, China
| | - Junyan Wu
- Cleerly Inc., New York, United States
| | | | - Ting Zhou
- University at Buffalo, New York, United States
| | - Janos Toth
- University of Debrecen, Faculty of Informatics 4002 Debrecen, POB 400, Hungary
| | - Agnes Baran
- University of Debrecen, Faculty of Informatics 4002 Debrecen, POB 400, Hungary
| | | | | | | | | | - Xingzheng Lyu
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China; Machine Learning for Bioimage Analysis Group, Bioinformatics Institute, A*STAR, Singapore
| | - Li Cheng
- Machine Learning for Bioimage Analysis Group, Bioinformatics Institute, A*STAR, Singapore; Department of Electric and Computer Engineering, University of Alberta, Canada
| | - Qinhao Chu
- School of Computing, National University of Singapore, Singapore
| | - Pengcheng Li
- School of Computing, National University of Singapore, Singapore
| | - Xin Ji
- Beijing Shanggong Medical Technology Co., Ltd., China
| | - Sanyuan Zhang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Yaxin Shen
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China
| | - Ling Dai
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China
| | | | | | - Tânia Melo
- INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
| | - Teresa Araújo
- INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal; FEUP - Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Balazs Harangi
- University of Debrecen, Faculty of Informatics 4002 Debrecen, POB 400, Hungary
| | - Bin Sheng
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China
| | - Ruogu Fang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, USA
| | | | - Andras Hajdu
- University of Debrecen, Faculty of Informatics 4002 Debrecen, POB 400, Hungary
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, China
| | - Ana Maria Mendonça
- INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal; FEUP - Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Shaoting Zhang
- Department of Computer Science, University of North Carolina at Charlotte, USA
| | - Aurélio Campilho
- INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal; FEUP - Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Bin Zheng
- School of Electrical and Computer Engineering, University of Oklahoma, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Luca Giancardo
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, USA
| | | | - Fabrice Mériaudeau
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Malaysia; ImViA/IFTIM, Université de Bourgogne, Dijon, France
| |
Collapse
|
8
|
Muangnak N, Aimmanee P, Makhanov S. Automatic optic disk detection in retinal images using hybrid vessel phase portrait analysis. Med Biol Eng Comput 2017; 56:583-598. [PMID: 28836125 DOI: 10.1007/s11517-017-1705-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/03/2017] [Indexed: 01/23/2023]
Abstract
We propose vessel vector-based phase portrait analysis (VVPPA) and a hybrid between VVPPA and a clustering method proposed earlier for automatic optic disk (OD) detection called the vessel transform (VT). The algorithms are based primarily on the location and direction of retinal blood vessels and work equally well on fine and poor quality images. To localize the OD, the direction vectors derived from the vessel network are constructed, and points of convergence of the resulting vector field are examined by phase portrait analysis. The hybrid method (HM) uses a set of rules acquired from the decision model to alternate the use of VVPPA and VT. To identify the OD contour, the scale space (SS) approach is integrated with VVPPA, HM, and the circular approximation (SSVVPPAC and SSHMC). We test the proposed combination against state-of-the-art OD detection methods. The results show that the proposed algorithms outperform the benchmark methods, especially on poor quality images. Specifically, the HM gets the highest accuracy of 98% for localization of the OD regardless of the image quality. Testing the segmentation routines SSVVPPAC and SSHMC against the conventional methods shows that SSHMC performs better than the existing methods, achieving the highest PPV of 71.81% and the highest sensitivity of 70.67% for poor quality images. Furthermore, the HM can supplement practically any segmentation model as long as it offers multiple OD candidates. In order to prove this claim, we test the efficiency of the HM in detecting retinal abnormalities in a real clinical setting. The images have been obtained by portable lens connected to a smart phone. In detecting the abnormalities related to diabetic retinopathy (DR), the algorithm provided 94.67 and 98.13% for true negatives and true positives, respectively.
Collapse
Affiliation(s)
- Nittaya Muangnak
- Sirindhorn International Institute of Technology, Thammasat University, 131 Moo 5, Tiwanont Road, Bangkadi, Muang, Pathum Thani, 12000, Thailand
| | - Pakinee Aimmanee
- Sirindhorn International Institute of Technology, Thammasat University, 131 Moo 5, Tiwanont Road, Bangkadi, Muang, Pathum Thani, 12000, Thailand.
| | - Stanislav Makhanov
- Sirindhorn International Institute of Technology, Thammasat University, 131 Moo 5, Tiwanont Road, Bangkadi, Muang, Pathum Thani, 12000, Thailand
| |
Collapse
|
9
|
Acharya UR, Bhat S, Koh JEW, Bhandary SV, Adeli H. A novel algorithm to detect glaucoma risk using texton and local configuration pattern features extracted from fundus images. Comput Biol Med 2017; 88:72-83. [PMID: 28700902 DOI: 10.1016/j.compbiomed.2017.06.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 01/17/2023]
Abstract
Glaucoma is an optic neuropathy defined by characteristic damage to the optic nerve and accompanying visual field deficits. Early diagnosis and treatment are critical to prevent irreversible vision loss and ultimate blindness. Current techniques for computer-aided analysis of the optic nerve and retinal nerve fiber layer (RNFL) are expensive and require keen interpretation by trained specialists. Hence, an automated system is highly desirable for a cost-effective and accurate screening for the diagnosis of glaucoma. This paper presents a new methodology and a computerized diagnostic system. Adaptive histogram equalization is used to convert color images to grayscale images followed by convolution of these images with Leung-Malik (LM), Schmid (S), and maximum response (MR4 and MR8) filter banks. The basic microstructures in typical images are called textons. The convolution process produces textons. Local configuration pattern (LCP) features are extracted from these textons. The significant features are selected using a sequential floating forward search (SFFS) method and ranked using the statistical t-test. Finally, various classifiers are used for classification of images into normal and glaucomatous classes. A high classification accuracy of 95.8% is achieved using six features obtained from the LM filter bank and the k-nearest neighbor (kNN) classifier. A glaucoma integrative index (GRI) is also formulated to obtain a reliable and effective system.
Collapse
Affiliation(s)
- U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489, Singapore; Department of Biomedical Engineering, School of Science and Technology, SUSS University, 599491, Singapore; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603, Malaysia.
| | - Shreya Bhat
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal, 576104, India
| | - Joel E W Koh
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489, Singapore
| | - Sulatha V Bhandary
- Department of Ophthalmology, Kasturba Medical College, Manipal, 576104, India
| | - Hojjat Adeli
- Departments of Neuroscience, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, United States; Departments of Neurology, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, United States; Departments of Biomedical Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, United States; Departments of Biomedical Informatics, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, United States; Departments of Civil, Environmental, and Geodetic Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, United States
| |
Collapse
|