1
|
Van de Voorde B, Benmeridja L, Giol ED, Van der Meeren L, Van Damme L, Liu Z, Toncheva A, Raquez JM, Van den Brande N, Skirtach A, Declercq H, Dubruel P, Van Vlierberghe S. Potential of poly(alkylene terephthalate)s to control endothelial cell adhesion and viability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112378. [PMID: 34579897 DOI: 10.1016/j.msec.2021.112378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Poly(ethylene terephthalate) (PET) is known for its various useful characteristics, including its applicability in cardiovascular applications, more precisely as synthetic bypass grafts for large diameter (≥ 6 mm) blood vessels. Although it is widely used, PET is not an optimal material as it is not interactive with endothelial cells, which is required for bypasses to form a complete endothelium. Therefore, in this study, poly(alkylene terephthalate)s (PATs) have been studied. They were synthesized via a single-step solution polycondensation reaction, which requires mild reaction conditions and avoids the use of a catalyst or additives like heat stabilizers. A homologous series was realized in which the alkyl chain length varied from 5 to 12 methylene groups (n = 5-12). Molar masses up to 28,000 g/mol were obtained, while various odd-even trends were observed with modulated differential scanning calorimetry (mDSC) and rapid heat-cool calorimetry (RHC) to access the thermal properties within the homologous series. The synthesized PATs have been subjected to in vitro cell viability assays using Human Umbilical Vein Endothelial Cells (HUVECs) and Human Dermal Microvascular Endothelial Cells (HDMECs). The results showed that HUVECs adhere and proliferate most pronounced onto PAT(n=9) surfaces, which could be attributed to the surface roughness and morphology as determined by atomic force microscopy (AFM) (i.e. Rq = 204.7 nm). HDMECs were investigated in the context of small diameter vessels and showed superior adhesion and proliferation after seeding onto PAT(n=6) substrates. These preliminary results already pave the way towards the use of PAT materials as substrates to support endothelial cell adhesion and growth. Indeed, as superior endothelial cell interactivity compared to PET was observed, time-consuming and costly surface modifications of PET grafts could be avoided by exploiting this novel material class.
Collapse
Affiliation(s)
- Babs Van de Voorde
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium; SIM vzw, Technologiepark 48, B-9052 Zwijnaarde, Belgium
| | - Lara Benmeridja
- Department of Basic Medical Sciences, Tissue Engineering and Biomaterials Group, Ghent University, De Pintelaan 185, B3, B-9000 Ghent, Belgium
| | - Elena Diana Giol
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium
| | - Louis Van der Meeren
- Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Lana Van Damme
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium
| | - Zhen Liu
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Antoniya Toncheva
- Laboratory of Polymeric and Composite Materials, University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials, University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
| | - Niko Van den Brande
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - André Skirtach
- Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Heidi Declercq
- Department of Basic Medical Sciences, Tissue Engineering and Biomaterials Group, Ghent University, De Pintelaan 185, B3, B-9000 Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium.
| |
Collapse
|