Vieira L, Mordechai HS, Sharabi M, Tipper JL, Tavakoli J. Stress relaxation behavior of the transition zone in the intervertebral disc.
Acta Biomater 2024:S1742-7061(24)00547-6. [PMID:
39322045 DOI:
10.1016/j.actbio.2024.09.032]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
The stress relaxation of the TZ region, located at the interface of the Annulus Fibrosus (AF) and Nucleus Pulposus (NP) of the disc, and how its stress is relaxed compared to the adjacent regions is unknown. The current study aimed to identify the TZ stress relaxation properties under different strain magnitudes (0.2, 0.4, and 0.6 mm/mm) and compared the TZ stress relaxation characteristics to the NP and inner AF (IAF) regions at a specific strain magnitude (0.6 mm/mm). The results of the current study revealed that the TZ region exhibited different stress relaxation properties under various strain magnitudes with significantly higher initial (p < 0.008) and reduced stresses (marginally; p = 0.06) at higher strains. Our experimental stress relaxation data revealed a significantly higher equilibrium stress for the IAF compared to the TZ and NP regions (p < 0.001) but not between the TZ and NP regions (p = 0.7). We found that NP radial stress relaxed significantly faster (p < 0.04) than the TZ and NP. Additionally, the current study proposed a simple mathematical model and identified that, consistent with experimental data, the overall effect of region on both the level of decayed stress and the rate at which stress is relaxed was significant (p < 0.006). The current study found a similar stress relaxation characteristic between the NP and TZ regions, while IAF exhibited different stress relaxation properties. It is possible that this mismatch in stress relaxation acts as a shape transformation mechanism triggered by viscoelastic behavior. STATEMENT OF SIGNIFICANCE: Our understanding of the biomechanical properties of the transition zone (TZ) in the IVD, a region at the interface of the Nucleus Pulposus (NP) and Annulus Fibrosus (AF), is sparse. Unfortunately, there are no current studies that investigate the TZ stress relaxation properties and how stress is relaxed in the TZ compared to the adjacent regions. For the first time, the current study characterized the stress relaxation properties of the TZ and described how the TZ stress is relaxed compared to its adjacent regions.
Collapse