1
|
Damaser MS, Valentini FA, Clavica F, Giarenis I. Is the time right for a new initiative in mathematical modeling of the lower urinary tract? ICI-RS 2023. Neurourol Urodyn 2024; 43:1303-1310. [PMID: 38149773 DOI: 10.1002/nau.25362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
INTRODUCTION A session at the 2023 International Consultation on Incontinence - Research Society (ICI-RS) held in Bristol, UK, focused on the question: Is the time right for a new initiative in mathematical modeling of the lower urinary tract (LUT)? The LUT is a complex system, comprising various synergetic components (i.e., bladder, urethra, neural control), each with its own dynamic functioning and high interindividual variability. This has led to a variety of different types of models for different purposes, each with advantages and disadvantages. METHODS When addressing the LUT, the modeling approach should be selected and sized according to the specific purpose, the targeted level of detail, and the available computational resources. Four areas were selected as examples to discuss: utility of nomograms in clinical use, value of fluid mechanical modeling, applications of models to simplify urodynamics, and utility of statistical models. RESULTS A brief literature review is provided along with discussion of the merits of different types of models for different applications. Remaining research questions are provided. CONCLUSIONS Inadequacies in current (outdated) models of the LUT as well as recent advances in computing power (e.g., quantum computing) and methods (e.g., artificial intelligence/machine learning), would dictate that the answer is an emphatic "Yes, the time is right for a new initiative in mathematical modeling of the LUT."
Collapse
Affiliation(s)
- Margot S Damaser
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Françoise A Valentini
- Physical Medicine and Rehabilitation Department, Rothschild Hospital, Sorbonne Université, Paris, France
| | - Francesco Clavica
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ilias Giarenis
- Department of UroGynaecology, Norfolk and Norwich University Hospital, Norwich, UK
| |
Collapse
|
2
|
Zhu L, Wang L, Gao Y, Feng W, Fan Y. Effect of ureteral stent length and implantation position on migration after implantation. Med Biol Eng Comput 2023:10.1007/s11517-023-02856-5. [PMID: 37322393 DOI: 10.1007/s11517-023-02856-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ureteral obstruction is a urinary system disease that causes urinary retention, renal injury, renal colic, and infection. Ureteral stents are often used for conservative treatment in clinics, and their migration usually results in ureteral stent failure. The migrations include proximal migration to the kidney side and distal migration to the bladder side, but the biomechanism of stent migration is still unknown. METHOD Finite element models of stents with lengths from 6-30 cm were developed. The stents were implanted into the middle of the ureter to analyze the effect of stent length on its migration, and the effect of stent implantation position on 6-cm-long stent migration was also observed. The stents' maximum axial displacement was used to assess the ease of stent migration. A time-varying pressure was applied to the ureter outer wall to simulate peristalsis. The stent and ureter adopted friction contact conditions. The two ends of the ureter were fixed. The radial displacement of the ureter was used to evaluate the effect of the stent on peristalsis. RESULTS AND DISCUSSION The maximum migration occurs in the positive direction for a 6-cm-long stent implanted at the proximal ureter (CD and DE), but in the negative direction at the distal ureter (FG and GH). The 6-cm-long stent demonstrated almost no effect on ureteral peristalsis. The 12-cm-long stent diminished the radial displacement of the ureter from 3-5 s. The 18-cm stent diminished the radial displacement of the ureter from 0-8 s, and the radial displacement within 2-6 s was weaker than other time. The 24-cm stent diminished the radial displacement of the ureter from 0-8 s, and the radial displacement within 1-7 s was weaker than other time. CONCLUSION The biomechanism of stent migration and ureteral peristalsis weakening after stent implantation was explored. Shorter stents were more likely to migrate. The implantation position had less influence on ureteral peristalsis compared with the stent length, which provided a reference for stent design aimed at reducing stent migration. Stent length was the main factor affecting ureteral peristalsis. This study provides a reference for the study of ureteral peristalsis.
Collapse
Affiliation(s)
- Lin Zhu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
| | - Yuanming Gao
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Wentao Feng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| |
Collapse
|
3
|
Yang PJ, Chen TG, Bracher SB, Hui A, Hu DL. Urinary flow through urethras with a rough lumen. Neurourol Urodyn 2023. [PMID: 37190877 DOI: 10.1002/nau.25186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/01/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
AIMS This study investigates how lumen roughness and urethral length influence urinary flow speed. METHODS We used micro-computed tomography scans to measure the lumen roughness and dimensions for rabbits, cats, and pigs. We designed and fabricated three-dimensional-printed urethra mimics of varying roughness and length to perform flow experiments. We also developed a corresponding mathematical model to rationalize the observed flow speed. RESULTS We update the previously reported relationship between body mass and urethra length and diameter, now including 41 measurements for urethra length and 10 measurements for diameter. We report the relationship between lumen diameter and roughness as a function of position down the urethra for rabbits, cats, and pigs. The time course of urinary speed from our mimics is reported, as well as the average speed as a function of urethra length. CONCLUSIONS Based on the behavior of our mimics, we conclude that the lumen roughness in mammals reduces flow speed by up to 25% compared to smooth urethras. Urine flows fastest when the urethra length exceeds 25 times its diameter. Longer urethras do not drain faster due to viscous effects counteracting the additional gravitational head. However, flows with our urethra mimics are still 6 times faster than those observed in nature, suggesting that further work is needed to understand flow resistance in the urethra.
Collapse
Affiliation(s)
- Patricia J Yang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Tony G Chen
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Sarah B Bracher
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Medical College of Georgia, Augusta, Georgia, USA
| | - Aaron Hui
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - David L Hu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Zarrinchang P, Ashrafizaadeh M, Jamshidi N. Simulation of the female pelvic mobility and vesical pressure changes employing fluid-structure interaction method. Int Urogynecol J 2023; 34:571-580. [PMID: 36169682 DOI: 10.1007/s00192-022-05362-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/05/2022] [Indexed: 01/26/2023]
Abstract
INTRODUCTION AND HYPOTHESIS This study aims to develop a fluid-structural interaction (FSI) method to pinpoint the effects of pressure changes inside the bladder and their impact on the supporting structure and the urethra mobility. METHODS A physiological model of the nulliparous female pelvis, including the organs, supportive structures, and urine, was developed based on magnetic resonance images. Soft tissues with nonlinear hyperelastic material characteristics were modeled. The Navier-Stokes equations governing the fluid flow within the computational domain (urine) were solved. The urine and soft tissue interactions were simulated by the FSI method. The vesical pressure and its impact on the urethral mobility and supportive structures were investigated during the Valsalva maneuver. Moreover, the simulation results were validated by comparing with a urodynamic test and other research. RESULTS The results demonstrated that the vesical pressure simulated by the FSI method could predict the nonlinear behavior of the urodynamic test pressure. The urethra retropubic bladder neck and the bladder neck-pubic bone angle changed 58.92% and -55.76%, respectively. The retropubic urethral length distance changed by -48.74%. The error compared to the statistical results of other research is < 5%. CONCLUSIONS The total deformation and mobility of the urethra predicted by the FSI model were consistent with clinical observations in a subject. The urethra supports dependence on the tissues' mechanical properties, interaction between the tissues, and effect of urine fluid inside the bladder. This simulation effectively depicts the patterns of urethra mobility, which provides a better understanding of the behavior of the pelvic floor.
Collapse
Affiliation(s)
- Pouya Zarrinchang
- Mechanical Engineering group, Pardis College, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mahmud Ashrafizaadeh
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Nima Jamshidi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| |
Collapse
|
5
|
Urinary Stent Development and Evaluation Models: In Vitro, Ex Vivo and In Vivo-A European Network of Multidisciplinary Research to Improve Urinary Stents (ENIUS) Initiative. Polymers (Basel) 2022; 14:polym14091641. [PMID: 35566810 PMCID: PMC9102855 DOI: 10.3390/polym14091641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background: When trying to modify urinary stents, certain pre-clinical steps have to be followed before clinical evaluation in humans. Usually, the process starts as an in silico assessment. The urinary tract is a highly complex, dynamic and variable environment, which makes a computer simulation closely reflecting physiological conditions extremely challenging. Therefore, the pre-clinical evaluation needs to go through further steps of in vitro, ex vivo and in vivo assessments. Methods and materials: Within the European Network of Multidisciplinary Research to Improve Urinary Stents (ENIUS), the authors summarized and evaluated stent assessment models in silico, in vitro, ex vivo and in vivo. The topic and relevant sub-topics were researched in a systematic literature search in Embase, Scope, Web of Science and PubMed. Clinicaltrials.gov was consulted for ongoing trials. Articles were selected systematically according to guidelines with non-relevant, non-complete, and non-English or Spanish language articles excluded. Results: In the first part of this paper, we critically evaluate in vitro stent assessment models used over the last five decades, outlining briefly their strengths and weaknesses. In the second part, we provide a step-by-step guide on what to consider when setting up an ex vivo model for stent evaluation on the example of a biodegradable stent. Lastly, the third part lists and discusses the pros and cons of available animal models for urinary stent evaluation, this being the final step before human trials. Conclusions: We hope that this overview can provide a practical guide and a critical discussion of the experimental pre-clinical evaluation steps needed, which will help interested readers in choosing the right methodology from the start of a stent evaluation process once an in silico assessment has been completed. Only a transparent multidisciplinary approach using the correct methodology will lead to a successful clinical implementation of any new or modified stent.
Collapse
|
6
|
Routzong MR, Martin LC, Rostaminia G, Abramowitch S. Urethral support in female urinary continence part 2: a computational, biomechanical analysis of Valsalva. Int Urogynecol J 2022; 33:551-561. [PMID: 33787951 DOI: 10.1007/s00192-021-04694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/10/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION AND HYPOTHESIS In Part 1, we observed urethral mechanics during Valsalva that oppose current continence theories. In this study, we utilize a finite element model to elucidate the role of supportive tissues on the urethra during Valsalva. By determining the sensitivity of urethral motion and deformations to variations in tissue stiffnesses, we formulate new hypotheses regarding mechanisms of urethral passive closure. METHODS Anatomy was segmented from a nulliparous, continent woman at rest. The model was tuned such that urethral motion during Valsalva matched that observed in that patient. Urethra and surrounding tissue material properties were varied using Latin hypercube sampling to perform a sensitivity analysis. As in Part 1, urethral length, proximal and distal swinging, and shape parameters were measured at peak Valsalva for 50 simulations, and partial rank correlation coefficients were calculated between all model inputs and outputs. Cumulative influence factors determined which tissue properties were meaningfully influential (≥ 0.5). RESULTS The material properties of the urethra, perineal membrane, bladder, and paraurethral connective tissues meaningfully influenced urethral motion, deformation, and shape. Reduction of the urethral stiffness and/or the perineal membrane soft constraint resulted in simulated urethral motions and shapes associated with stress urinary incontinence in Part 1. CONCLUSIONS The data from Parts 1 and 2 suggest that connective tissues guide the controlled swinging motion and deformation of the urethra needed for passive closure during Valsalva. The swinging and kinking quantified in Part 1 and simulated in Part 2 are inconsistent with current continence theories.
Collapse
Affiliation(s)
- Megan R Routzong
- Department of Bioengineering, University of Pittsburgh, 300 O'Hara Street, 406 Benedum Hall, Pittsburgh, PA, 15260, USA
| | - Liam C Martin
- Department of Bioengineering, University of Pittsburgh, 300 O'Hara Street, 406 Benedum Hall, Pittsburgh, PA, 15260, USA
| | - Ghazaleh Rostaminia
- Female Pelvic Medicine and Reconstructive Surgery (FPMRS), Division of Urogynecology, University of Chicago Pritzker School of Medicine, NorthShore University HealthSystem, Skokie, IL, USA
| | - Steven Abramowitch
- Department of Bioengineering, University of Pittsburgh, 300 O'Hara Street, 406 Benedum Hall, Pittsburgh, PA, 15260, USA.
| |
Collapse
|