1
|
Zeng J, Wu C, Li P, Li J, Wang B, Xu J, Gao W, Chen K. Enhancing Mechanical and Antimicrobial Properties of Dialdehyde Cellulose-Silver Nanoparticle Composites through Ammoniated Nanocellulose Modification. Molecules 2024; 29:2065. [PMID: 38731558 PMCID: PMC11085600 DOI: 10.3390/molecules29092065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Given the widespread prevalence of viruses, there is an escalating demand for antimicrobial composites. Although the composite of dialdehyde cellulose and silver nanoparticles (DAC@Ag1) exhibits excellent antibacterial properties, its weak mechanical characteristics hinder its practical applicability. To address this limitation, cellulose nanofibers (CNFs) were initially ammoniated to yield N-CNF, which was subsequently incorporated into DAC@Ag1 as an enhancer, forming DAC@Ag1/N-CNF. We systematically investigated the optimal amount of N-CNF and characterized the DAC@Ag1/N-CNF using FT-IR, XPS, and XRD analyses to evaluate its additional properties. Notably, the optimal mass ratio of N-CNF to DAC@Ag1 was found to be 5:5, resulting in a substantial enhancement in mechanical properties, with a 139.8% increase in tensile elongation and a 33.1% increase in strength, reaching 10% and 125.24 MPa, respectively, compared to DAC@Ag1 alone. Furthermore, the inhibition zones against Escherichia coli and Staphylococcus aureus were significantly expanded to 7.9 mm and 15.9 mm, respectively, surpassing those of DAC@Ag1 alone by 154.8% and 467.9%, indicating remarkable improvements in antimicrobial efficacy. Mechanism analysis highlighted synergistic effects from chemical covalent bonding and hydrogen bonding in the DAC@Ag1/N-CNF, enhancing the mechanical and antimicrobial properties significantly. The addition of N-CNF markedly augmented the properties of the composite film, thereby facilitating its broader application in the antimicrobial field.
Collapse
Affiliation(s)
- Jinsong Zeng
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (J.Z.); (C.W.); (J.L.); (B.W.); (J.X.); (W.G.); (K.C.)
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Chen Wu
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (J.Z.); (C.W.); (J.L.); (B.W.); (J.X.); (W.G.); (K.C.)
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Pengfei Li
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (J.Z.); (C.W.); (J.L.); (B.W.); (J.X.); (W.G.); (K.C.)
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- School of Environment and Energy, South China University of Technology, Guangzhou 510640, China
| | - Jinpeng Li
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (J.Z.); (C.W.); (J.L.); (B.W.); (J.X.); (W.G.); (K.C.)
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Bin Wang
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (J.Z.); (C.W.); (J.L.); (B.W.); (J.X.); (W.G.); (K.C.)
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Jun Xu
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (J.Z.); (C.W.); (J.L.); (B.W.); (J.X.); (W.G.); (K.C.)
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Wenhua Gao
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (J.Z.); (C.W.); (J.L.); (B.W.); (J.X.); (W.G.); (K.C.)
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Kefu Chen
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (J.Z.); (C.W.); (J.L.); (B.W.); (J.X.); (W.G.); (K.C.)
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| |
Collapse
|
2
|
Rangel K, Cabral FO, Lechuga GC, Villas-Bôas MHS, Midlej V, De-Simone SG. Effectiveness Evaluation of a UV-C-Photoinactivator against Selected ESKAPE-E Pathogens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16559. [PMID: 36554438 PMCID: PMC9778679 DOI: 10.3390/ijerph192416559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Healthcare-associated infections (HAI) worldwide includes infections by ESKAPE-E pathogens. Environmental surfaces and fomites are important components in HAI transmission dynamics, and shoe soles are vectors of HAI. Ultraviolet (UV) disinfection is an effective method to inactivate pathogenic microorganisms. In this study, we investigated whether the SANITECH UV-C shoe sole decontaminator equipment that provides germicidal UV-C radiation could effectively reduce this risk of different pathogens. Six standard strains and four clinical MDR strains in liquid and solid medium were exposed to a UV-C System at specific concentrations at other times. Bacterial inactivation (growth and cultivability) was investigated using colony counts and resazurin as metabolic indicators. SEM was performed to assess the membrane damage. Statistically significant reduction in cell viability for all ATCCs strains occurred after 10 s of exposure to the UV-C system, except for S. enterica, which only occurred at 20 s. The cell viability of P. aeruginosa (90.9%), E. faecalis and A. baumannii (85.3%), S. enterica (82.9%), E. coli (79.2%) and S. aureus (71.9%) was reduced considerably at 20 s. In colony count, after 12 s of UV-C exposure, all ATCC strains showed a 100% reduction in CFU counts, except for A. baumannii, which reduced by 97.7%. A substantial reduction of colonies above 3 log10 was observed at 12 and 20 s in all bacterial strains tested, except for A. baumannii ATCC 19606 (12 s). The exposure of ATCCs bacterial strains to the UV-C system for only 2 s was able to reduce 100% in the colony forming units (CFU) count in all ATCCs strains, S. aureus, P. aeruginosa, E. coli, A. baumannii, E. faecalis, except the S. enterica strain which had a statistically significant reduction of 99.7%. In ATCC strains, there was a substantial decrease in colonies after 4 s (sec) of exposure to the UV-C system, with a reduction ranging from 3.78-4.15 log10 CFU/mL. This reduction was observed in MDR/ESKAPE-E strains within 10 s, showing that UV-C could eliminate above 3.84 log10 CFU/mL. SEM showed a reduction of pili-like appendages after UV-C treatment in all strains except for E. coli (ATCC 25922). The Sanitech UV-C shoe sole decontaminator equipment from Astech Serv. and Fabrication Ltd. (Petrópolis, Brazil), effectively killed in vitro a series of ATCCs and MDR/ESKAPE-E bacteria of sanitary interest, commonly found in the hospital environment.
Collapse
Affiliation(s)
- Karyne Rangel
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Fellipe O. Cabral
- Health Sciences Center, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-853, RJ, Brazil
| | - Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Maria H. S. Villas-Bôas
- Microbiology Department, National Institute for Quality Control in Health (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Victor Midlej
- Structural Biology Laboratory (LBE), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University (UFF), Niterói 22040-036, RJ, Brazil
| |
Collapse
|
3
|
Nicolau T, Gomes Filho N, Padrão J, Zille A. A Comprehensive Analysis of the UVC LEDs' Applications and Decontamination Capability. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2854. [PMID: 35454546 PMCID: PMC9028096 DOI: 10.3390/ma15082854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023]
Abstract
The application of light-emitting diodes (LEDs) has been gaining popularity over the last decades. LEDs have advantages compared to traditional light sources in terms of lifecycle, robustness, compactness, flexibility, and the absence of non-hazardous material. Combining these advantages with the possibility of emitting Ultraviolet C (UVC) makes LEDs serious candidates for light sources in decontamination systems. Nevertheless, it is unclear if they present better decontamination effectiveness than traditional mercury vapor lamps. Hence, this research uses a systematic literature review (SLR) to enlighten three aspects: (1) UVC LEDs' application according to the field, (2) UVC LEDs' application in terms of different biological indicators, and (3) the decontamination effectiveness of UVC LEDs in comparison to conventional lamps. UVC LEDs have spread across multiple areas, ranging from health applications to wastewater or food decontamination. The UVC LEDs' decontamination effectiveness is as good as mercury vapor lamps. In some cases, LEDs even provide better results than conventional mercury vapor lamps. However, the increase in the targets' complexity (e.g., multilayers or thicker individual layers) may reduce the UVC decontamination efficacy. Therefore, UVC LEDs still require considerable optimization. These findings are stimulating for developing industrial or final users' applications.
Collapse
Affiliation(s)
- Talita Nicolau
- 2C2T-Centre for Textile Science and Technology, University of Minho, 4800-058 Guimaraes, Portugal
| | - Núbio Gomes Filho
- School of Economics and Management, University of Minho, 4710-057 Braga, Portugal
| | - Jorge Padrão
- 2C2T-Centre for Textile Science and Technology, University of Minho, 4800-058 Guimaraes, Portugal
| | - Andrea Zille
- 2C2T-Centre for Textile Science and Technology, University of Minho, 4800-058 Guimaraes, Portugal
| |
Collapse
|