1
|
Al-Qazzaz NK, Aldoori AA, Ali SHBM, Ahmad SA, Mohammed AK, Mohyee MI. EEG Signal Complexity Measurements to Enhance BCI-Based Stroke Patients' Rehabilitation. SENSORS (BASEL, SWITZERLAND) 2023; 23:3889. [PMID: 37112230 PMCID: PMC10141766 DOI: 10.3390/s23083889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
The second leading cause of death and one of the most common causes of disability in the world is stroke. Researchers have found that brain-computer interface (BCI) techniques can result in better stroke patient rehabilitation. This study used the proposed motor imagery (MI) framework to analyze the electroencephalogram (EEG) dataset from eight subjects in order to enhance the MI-based BCI systems for stroke patients. The preprocessing portion of the framework comprises the use of conventional filters and the independent component analysis (ICA) denoising approach. Fractal dimension (FD) and Hurst exponent (Hur) were then calculated as complexity features, and Tsallis entropy (TsEn) and dispersion entropy (DispEn) were assessed as irregularity parameters. The MI-based BCI features were then statistically retrieved from each participant using two-way analysis of variance (ANOVA) to demonstrate the individuals' performances from four classes (left hand, right hand, foot, and tongue). The dimensionality reduction algorithm, Laplacian Eigenmap (LE), was used to enhance the MI-based BCI classification performance. Utilizing k-nearest neighbors (KNN), support vector machine (SVM), and random forest (RF) classifiers, the groups of post-stroke patients were ultimately determined. The findings show that LE with RF and KNN obtained 74.48% and 73.20% accuracy, respectively; therefore, the integrated set of the proposed features along with ICA denoising technique can exactly describe the proposed MI framework, which may be used to explore the four classes of MI-based BCI rehabilitation. This study will help clinicians, doctors, and technicians make a good rehabilitation program for people who have had a stroke.
Collapse
Affiliation(s)
- Noor Kamal Al-Qazzaz
- Department of Biomedical Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad 47146, Iraq
| | - Alaa A. Aldoori
- Department of Biomedical Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad 47146, Iraq
| | - Sawal Hamid Bin Mohd Ali
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Centre of Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Siti Anom Ahmad
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
- Malaysian Research Institute of Ageing (MyAgeing), University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Ahmed Kazem Mohammed
- Department of Biomedical Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad 47146, Iraq
| | - Mustafa Ibrahim Mohyee
- Department of Biomedical Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad 47146, Iraq
| |
Collapse
|
2
|
Chai J, Wu R, Li A, Xue C, Qiang Y, Zhao J, Zhao Q, Yang Q. Classification of mild cognitive impairment based on handwriting dynamics and qEEG. Comput Biol Med 2023; 152:106418. [PMID: 36566627 DOI: 10.1016/j.compbiomed.2022.106418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/01/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
Subtle changes in fine motor control and quantitative electroencephalography (qEEG) in patients with mild cognitive impairment (MCI) are important in screening for early dementia in primary care populations. In this study, an automated, non-invasive and rapid detection protocol for mild cognitive impairment based on handwriting kinetics and quantitative EEG analysis was proposed, and a classification model based on a dual fusion of feature and decision layers was designed for clinical decision-marking. Seventy-nine volunteers (39 healthy elderly controls and 40 patients with mild cognitive impairment) were recruited for this study, and the handwritten data and the EEG signals were performed using a tablet and MUSE under four designed handwriting tasks. Sixty-eight features were extracted from the EEG and handwriting parameters of each test. Features selected from both models were fused using a late feature fusion strategy with a weighted voting strategy for decision making, and classification accuracy was compared using three different classifiers under handwritten features, EEG features and fused features respectively. The results show that the dual fusion model can further improve the classification accuracy, with the highest classification accuracy for the combined features and the best classification result of 96.3% using SVM with RBF kernel as the base classifier. In addition, this not only supports the greater significance of multimodal data for differentiating MCI, but also tests the feasibility of using the portable EEG headband as a measure of EEG in patients with cognitive impairment.
Collapse
Affiliation(s)
- Jiali Chai
- College of Information and Computer, Taiyuan University of Technology, 030000, Taiyuan, Shanxi, China.
| | - Ruixuan Wu
- College of Information and Computer, Taiyuan University of Technology, 030000, Taiyuan, Shanxi, China
| | - Aoyu Li
- College of Information and Computer, Taiyuan University of Technology, 030000, Taiyuan, Shanxi, China
| | - Chen Xue
- College of Information and Computer, Taiyuan University of Technology, 030000, Taiyuan, Shanxi, China
| | - Yan Qiang
- College of Information and Computer, Taiyuan University of Technology, 030000, Taiyuan, Shanxi, China.
| | - Juanjuan Zhao
- College of Information and Computer, Taiyuan University of Technology, 030000, Taiyuan, Shanxi, China; Jinzhong College of Information, 030600, Taiyuan, Shanxi, China
| | - Qinghua Zhao
- College of Information and Computer, Taiyuan University of Technology, 030000, Taiyuan, Shanxi, China
| | - Qianqian Yang
- Jinzhong College of Information, 030600, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Xu G, Guo W, Wang Y. Subject-independent EEG emotion recognition with hybrid spatio-temporal GRU-Conv architecture. Med Biol Eng Comput 2023; 61:61-73. [PMID: 36322243 DOI: 10.1007/s11517-022-02686-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
Abstract
Recently, various deep learning frameworks have shown excellent performance in decoding electroencephalogram (EEG) signals, especially in human emotion recognition. However, most of them just focus on temporal features and ignore the features based on spatial dimensions. Traditional gated recurrent unit (GRU) model performs well in processing time series data, and convolutional neural network (CNN) can obtain spatial characteristics from input data. Therefore, this paper introduces a hybrid GRU and CNN deep learning framework named GRU-Conv to fully leverage the advantages of both. Nevertheless, contrary to most previous GRU architectures, we retain the output information of all GRU units. So, the GRU-Conv model could extract crucial spatio-temporal features from EEG data. And more especially, the proposed model acquires the multi-dimensional features of multi-units after temporal processing in GRU and then uses CNN to extract spatial information from the temporal features. In this way, the EEG signals with different characteristics could be classified more accurately. Finally, the subject-independent experiment shows that our model has good performance on SEED and DEAP databases. The average accuracy of the former is 87.04%. The mean accuracy of the latter is 70.07% for arousal and 67.36% for valence.
Collapse
Affiliation(s)
- Guixun Xu
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong Province, People's Republic of China
| | - Wenhui Guo
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong Province, People's Republic of China
| | - Yanjiang Wang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong Province, People's Republic of China.
| |
Collapse
|
4
|
Wagh KP, Vasanth K. Performance evaluation of multi-channel electroencephalogram signal (EEG) based time frequency analysis for human emotion recognition. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|