1
|
Rosellini M, Tassinari E, Danielli L, Marchetti A, Ricci C, Santoni M, Mollica V, Massari F. The value of molecular features in predicting efficacy of immuno-combinations in kidney cancer: just a drop in the ocean? Expert Rev Mol Diagn 2025; 25:139-142. [PMID: 40066646 DOI: 10.1080/14737159.2025.2478996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Affiliation(s)
- Matteo Rosellini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Elisa Tassinari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Linda Danielli
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Andrea Marchetti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Costantino Ricci
- Pathology Unit, DIAP-Dipartimento InterAziendale di Anatomia Patologica di Bologna, Maggiore Hospital-AUSL Bologna, Bologna, Italy
| | | | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Cottrell TR, Lotze MT, Ali A, Bifulco CB, Capitini CM, Chow LQM, Cillo AR, Collyar D, Cope L, Deutsch JS, Dubrovsky G, Gnjatic S, Goh D, Halabi S, Kohanbash G, Maecker HT, Maleki Vareki S, Mullin S, Seliger B, Taube J, Vos W, Yeong J, Anderson KG, Bruno TC, Chiuzan C, Diaz-Padilla I, Garrett-Mayer E, Glitza Oliva IC, Grandi P, Hill EG, Hobbs BP, Najjar YG, Pettit Nassi P, Simons VH, Subudhi SK, Sullivan RJ, Takimoto CH. Society for Immunotherapy of Cancer (SITC) consensus statement on essential biomarkers for immunotherapy clinical protocols. J Immunother Cancer 2025; 13:e010928. [PMID: 40054999 PMCID: PMC11891540 DOI: 10.1136/jitc-2024-010928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/05/2025] [Indexed: 03/12/2025] Open
Abstract
Immunotherapy of cancer is now an essential pillar of treatment for patients with many individual tumor types. Novel immune targets and technical advances are driving a rapid exploration of new treatment strategies incorporating immune agents in cancer clinical practice. Immunotherapies perturb a complex system of interactions among genomically unstable tumor cells, diverse cells within the tumor microenvironment including the systemic adaptive and innate immune cells. The drive to develop increasingly effective immunotherapy regimens is tempered by the risk of immune-related adverse events. Evidence-based biomarkers that measure the potential for therapeutic response and/or toxicity are critical to guide optimal patient care and contextualize the results of immunotherapy clinical trials. Responding to the lack of guidance on biomarker testing in early-phase immunotherapy clinical trials, we propose a definition and listing of essential biomarkers recommended for inclusion in all such protocols. These recommendations are based on consensus provided by the Society for Immunotherapy of Cancer (SITC) Clinical Immuno-Oncology Network (SCION) faculty with input from the SITC Pathology and Biomarker Committees and the Journal for ImmunoTherapy of Cancer readership. A consensus-based selection of essential biomarkers was conducted using a Delphi survey of SCION faculty. Regular updates to these recommendations are planned. The inaugural list of essential biomarkers includes complete blood count with differential to generate a neutrophil-to-lymphocyte ratio or systemic immune-inflammation index, serum lactate dehydrogenase and albumin, programmed death-ligand 1 immunohistochemistry, microsatellite stability assessment, and tumor mutational burden. Inclusion of these biomarkers across early-phase immunotherapy clinical trials will capture variation among trials, provide deeper insight into the novel and established therapies, and support improved patient selection and stratification for later-phase clinical trials.
Collapse
Affiliation(s)
- Tricia R Cottrell
- Queen's University Sinclair Cancer Research Institute, Kingston, Ontario, Canada
| | | | - Alaa Ali
- Stem Cell Transplant and Cellular Immunotherapy Program, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, Washington, DC, USA
| | - Carlo B Bifulco
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Christian M Capitini
- University of Wisconsin School of Medicine and Public Health and Carbone Cancer Center, Madison, Wisconsin, USA
| | | | - Anthony R Cillo
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deborah Collyar
- Patient Advocates In Research (PAIR), Danville, California, USA
| | - Leslie Cope
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | - Sacha Gnjatic
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Denise Goh
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore
| | - Susan Halabi
- Duke School of Medicine and Duke Cancer Institute, Durham, North Carolina, USA
| | - Gary Kohanbash
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Holden T Maecker
- Stanford University School of Medicine, Stanford, California, USA
| | - Saman Maleki Vareki
- Department of Oncology and Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Sarah Mullin
- Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Barbara Seliger
- Campus Brandenburg an der Havel, Brandenburg Medical School, Halle, Germany
| | - Janis Taube
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Wim Vos
- Radiomics.bio, Liège, Belgium
| | - Joe Yeong
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Kristin G Anderson
- Department of Microbiology, Immunology and Cancer Biology, Department of Obstetrics and Gynecology, Beirne B. Carter Center for Immunology Research and the University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| | - Tullia C Bruno
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Codruta Chiuzan
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | | | | | | | | | - Elizabeth G Hill
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Brian P Hobbs
- Dell Medical School, The University of Texas, Austin, Texas, USA
| | - Yana G Najjar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | | | - Sumit K Subudhi
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ryan J Sullivan
- Massachusetts General Hospital, Harvard Medical School, Needham, Massachusetts, USA
| | | |
Collapse
|
3
|
Abah MO, Ogenyi DO, Zhilenkova AV, Essogmo FE, Ngaha Tchawe YS, Uchendu IK, Pascal AM, Nikitina NM, Rusanov AS, Sanikovich VD, Pirogova YN, Boroda A, Moiseeva AV, Sekacheva MI. Innovative Therapies Targeting Drug-Resistant Biomarkers in Metastatic Clear Cell Renal Cell Carcinoma (ccRCC). Int J Mol Sci 2024; 26:265. [PMID: 39796121 PMCID: PMC11720203 DOI: 10.3390/ijms26010265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/13/2025] Open
Abstract
A thorough study of Clear Cell Renal Cell Carcinoma (ccRCC) shows that combining tyrosine kinase inhibitors (TKI) with immune checkpoint inhibitors (ICI) shows promising results in addressing the tumor-promoting influences of abnormal immunological and molecular biomarkers in metastatic Clear Cell Renal Cell Carcinoma (ccRCC). These abnormal biomarkers enhance drug resistance, support tumor growth, and trigger cancer-related genes. Ongoing clinical trials are testing new treatment options that appear more effective than earlier ones. However, more research is needed to confirm their long-term safety use and potential side effects. This study highlights vital molecular and immunological biomarkers associated with drug resistance in Clear Cell Renal Cell Carcinoma (ccRCC). Furthermore, this study identifies a number of promising drug candidates and biomarkers that serve as significant contributors to the enhancement of the overall survival of ccRCC patients. Consequently, this article offers pertinent insights on both recently completed and ongoing clinical trials, recommending further toxicity study for the prolonged use of this treatment strategy for patients with metastatic ccRCC, while equipping researchers with invaluable information for the progression of current treatment strategies.
Collapse
Affiliation(s)
- Moses Owoicho Abah
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
- Department of Cancer Bioinformatics and Molecular Biology, Royal Society of Clinical and Academic Researchers (ROSCAR) International, Abuja 900104, Nigeria
| | - Deborah Oganya Ogenyi
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Angelina V. Zhilenkova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Freddy Elad Essogmo
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Yvan Sinclair Ngaha Tchawe
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Ikenna Kingsley Uchendu
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
- Medical Laboratory Science Department, Faculty of Health Science and Technology, College of Medicine, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria
| | - Akaye Madu Pascal
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Natalia M. Nikitina
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Alexander S. Rusanov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Varvara D. Sanikovich
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Yuliya N. Pirogova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Alexander Boroda
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Aleksandra V. Moiseeva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Marina I. Sekacheva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| |
Collapse
|
4
|
Antar RM, Fawaz C, Gonzalez D, Xu VE, Drouaud AP, Krastein J, Pio F, Murdock A, Youssef K, Sobol S, Whalen MJ. The Evolving Molecular Landscape and Actionable Alterations in Urologic Cancers. Curr Oncol 2024; 31:6909-6937. [PMID: 39590142 PMCID: PMC11593205 DOI: 10.3390/curroncol31110511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
The genetic landscape of urologic cancers has evolved with the identification of actionable mutations that impact diagnosis, prognosis, and therapeutic strategies. This narrative review consolidates existing literature on genetic mutations across key urologic cancers, including bladder, renal, prostate, upper tract urothelial, testicular, and penile. The review highlights mutations in DNA damage repair genes, such as BRCA1/2 and PTEN, as well as pathway alterations like FGFR and PD-L1 overexpression. These mutations influence tumor behavior and therapeutic outcomes, emphasizing the need for precision oncology approaches. Molecular profiling, through tools like next-generation sequencing, has revolutionized patient care by enabling targeted treatment strategies, especially in cancers with distinct molecular subtypes such as luminal or basal bladder cancer and clear cell renal carcinoma. Emerging therapies, including FGFR inhibitors and immune checkpoint blockade, offer new treatment avenues, although resistance mechanisms remain a challenge. We also emphasize the importance of biomarker identification for personalized management, especially in metastatic settings where treatment intensification is often required. Future research is needed to further elucidate our understanding of the genetics affecting urologic cancers, which will help develop novel, individualized therapies to enhance oncologic outcomes.
Collapse
Affiliation(s)
- Ryan Michael Antar
- Department of Urology, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA (M.J.W.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Tang H, Li YX, Lian JJ, Ng HY, Wang SSY. Personalized treatment using predictive biomarkers in solid organ malignancies: A review. TUMORI JOURNAL 2024; 110:386-404. [PMID: 39091157 DOI: 10.1177/03008916241261484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In recent years, the influence of specific biomarkers in the diagnosis and prognosis of solid organ malignancies has been increasingly prominent. The relevance of the use of predictive biomarkers, which predict cancer response to specific forms of treatment provided, is playing a more significant role than ever before, as it affects diagnosis and initiation of treatment, monitoring for efficacy and side effects of treatment, and adjustment in treatment regimen in the long term. In the current review, we explored the use of predictive biomarkers in the treatment of solid organ malignancies, including common cancers such as colorectal cancer, breast cancer, lung cancer, prostate cancer, and cancers associated with high mortalities, such as pancreatic cancer, liver cancer, kidney cancer and cancers of the central nervous system. We additionally analyzed the goals and types of personalized treatment using predictive biomarkers, and the management of various types of solid organ malignancies using predictive biomarkers and their relative efficacies so far in the clinical settings.
Collapse
|
6
|
He C, Li Q, Wu W, Liu K, Li X, Zheng H, Lai Y. Ferroptosis-associated genes and compounds in renal cell carcinoma. Front Immunol 2024; 15:1473203. [PMID: 39399506 PMCID: PMC11466770 DOI: 10.3389/fimmu.2024.1473203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
As the main type of renal cell carcinoma (RCC), clear cell RCC (ccRCC) is often associated with the deletion or mutation of the von Hippel Lindau (VHL) gene, enhancement of glucose and lipid metabolism, and heterogeneity of the tumor microenvironment. VHL alterations in RCC cells lead to the activation of hypoxia-inducible factors and their downstream target vascular endothelial growth factor, and to the reprogramming of multiple cell death pathways and metabolic weakness, including ferroptosis, which are associated with targeted therapy or immunotherapy. The changes in biological metabolites (e.g., iron and lipids) support ferroptosis as a potential therapeutic strategy for RCC, while iron metabolism and ferroptosis regulation have been examined as anti-RCC agents in numerous studies, and various ferroptosis-related molecules have been shown to be related to the metastasis and prognosis of ccRCC. For example, glutathione peroxidase 4 and glutaminase inhibitors can inhibit pyrimidine synthesis and increase reactive oxygen species levels in VHL-deficient RCC cells. In addition, the release of damage-associated molecular patterns by tumor cells undergoing ferroptosis also mediates antitumor immunity, and immune therapy can synergize with targeted therapy or radiotherapy through ferroptosis. However, Inducing ferroptosis not only suppresses cancer, but also promotes cancer development due to its potential negative effects on anti-cancer immunity. Therefore, ferroptosis and various tumor microenviroment-related molecules may co-occur during the development and treatment of RCC, and further understanding of the interactions, core targets, and related drugs of ferroptosis may provide new combination drug strategies for RCC treatment. Here we summarize the key genes and compounds on ferroptosis and RCC in order to envision future treatment strategies and to provide sufficient information for overcoming RCC resistance through ferroptosis.
Collapse
Affiliation(s)
- Chengwu He
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qingyi Li
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Weijia Wu
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ke Liu
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xingwen Li
- Tibet Future Biomedicine Company Limited, Golmud, Qinghai, China
| | - Hanxiong Zheng
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yongchang Lai
- Department of Pharmaceutical Management, School of Medical Business, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Naffrichoux J, Poupin P, Pouillot W, Linassier C, Rioux-Leclercq N, De Vries-Brilland M, Mourey L, Laguerre B, Oudard S, Gross-Goupil M, Mousset C, Gravis G, Rolland F, Moise L, Emambux S, Vassal C, Zanetta S, Penel N, Albiges L, Fromont G, Cancel M. PD-L1 expression and its prognostic value in metastatic papillary renal cell carcinoma: Results from a GETUG multicenter retrospective cohort. Eur J Cancer 2024; 205:114121. [PMID: 38749111 DOI: 10.1016/j.ejca.2024.114121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024]
Abstract
INTRODUCTION Papillary renal cell carcinoma (pRCC) is a rare and aggressive cancer with no specifically established therapeutic strategy in the metastatic setting. Combinations of tyrosine kinase and immune checkpoint inhibitors (ICI) are a promising option. We aimed to study the immune landscape of metastatic pRCC, and its interactions with angiogenesis pathways, to search for potential therapeutic targets. METHODS The expression of immune markers (PD-L1, PD-1, PD-L2, LAG-3) and angiogenic pathways (CAIX, c-MET), was analyzed by immunohistochemistry on 68 metastatic pRCC retrieved from a retrospective multicenter GETUG cohort. Our primary endpoint was to estimate the prevalence of PD-L1 expression and its prognostic impact in metastatic pRCC. Secondary endpoints included the evaluation of other immune markers (PD-1, PD-L2, and LAG-3) and their association with PD-L1. We also assessed angiogenic markers and their association with PD-L1. RESULTS Overall, 27.9 % of tumors were PD-L1 positive. PD-L2 was more frequently expressed (45.6 %), PD-1 and LAG-3 were positive in 17.6 % and 19.1 % respectively. None of these markers was correlated with PD-L1 expression. 66 % (45/68) expressed at least one immune marker, and 43 % (29/68) were "double-positive", as they expressed both immune and angiogenic markers. OS was significantly shorter for patients with PD-L1 positive pRCC. A multivariate analysis confirmed a significant association between PD-L1 expression and shorter overall survival (HR = 4.0, p = 0.01). CONCLUSION These results reinforce clinical data on the expected benefit of ICI in metastatic pRCC treatment, as PD-L1 expression is a factor of poor prognosis in this multicenter cohort.
Collapse
Affiliation(s)
| | | | | | - Claude Linassier
- Department of Medical Oncology, University Hospital, Tours, France
| | | | | | - Loïc Mourey
- Department of Medical Oncology, IUCT Oncopole, Toulouse, France
| | - Brigitte Laguerre
- Department of Medical Oncology, Eugène Marquis Cancer Center, Rennes, France
| | - Stéphane Oudard
- Department of Medical Oncology, Georges Pompidou Hospital, University Paris Cité, Paris, France
| | - Marine Gross-Goupil
- Department of Medical Oncology, Saint-André University Hospital, Bordeaux, France
| | | | - Gwenaelle Gravis
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Frédéric Rolland
- Department of Medical Oncology, Institut de Cancérologie de L'Ouest, Saint Herblain, France
| | - Laura Moise
- Department of Medical Oncology, Centre François Baclesse, Caen, France
| | - Sheik Emambux
- Department of Medical Oncology, La Milétrie University Hospital, Poitiers, France
| | - Cécile Vassal
- Department of Medical Oncology, Institut de Cancérologie Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Sylvie Zanetta
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Nicolas Penel
- Lille University and Department of Medical Oncology, Centre Oscar Lambret, Lille, France
| | - Laurence Albiges
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Gaëlle Fromont
- Department of Pathology, University Hospital, Tours, France; INSERM UMR 1069, N2COx, Tours University, Tours, France
| | - Mathilde Cancel
- Department of Medical Oncology, University Hospital, Tours, France; INSERM UMR 1069, N2COx, Tours University, Tours, France.
| |
Collapse
|
8
|
Tucci M, Mandarà M, Giuliani J, Durante E, Buttigliero C, Turco F, Palesandro E, Campisi I, Singh N, Muraro M, Munoz F, Fiorica F. Treatment options in first-line metastatic renal carcinoma: A meta-analysis of 2556 patients treated with immune checkpoint inhibitors-based combinations in randomised controlled trials. Cancer Treat Rev 2024; 127:102745. [PMID: 38723394 DOI: 10.1016/j.ctrv.2024.102745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND & AIMS The average five-year survival of metastatic renal cell carcinoma (mRCC) is 71%. However, there is significant variability in patient prognosis. Immune checkpoint inhibitors (ICIs) have been introduced into the treatment landscape of mRCC. This meta-analysis aimed to estimate progression-free and overall survival probabilities and identify possible outcome predictors of mRCC patients treated with ICI combination as first-line treatment. METHODS Studies comparing the combination of ICI combinations versus standard of therapy for first-line treatment of advanced renal-cell carcinoma were searched in MEDLINE, CANCERLIT, the Cochrane Controlled Trials Register, and the Cochrane Library from inception through September 2023. Data on patient populations and outcomes were extracted from each study by three independent observers and combined using the DerSimonian and Laird methods. RESULTS Six studies met the inclusion criteria. Globally, 5121 patients were included in this meta-analysis: 2556 patients treated with immune checkpoint inhibitors and 2565 with sunitinib as control. The ICI combination was associated with improved PFS (hazard ratio (HR) 0.68; 95 % confidence interval (CI), 0.56-0.81, p < 0.0001). Furthermore, ICI combination was also associated with OS improvement (HR 0.85; 95 % CI, 0.78-0.92, p = 0.001). There is no statistical increase in adverse events. CONCLUSIONS Our findings show that PFS and OS are statistically increased in mRCC with ICI combination treatment by 32% and 15%, respectively.
Collapse
Affiliation(s)
- Marcello Tucci
- Department of Medical Oncology, Cardinal Massaia Hospital, 14100 Asti, Italy
| | - Marta Mandarà
- Department of Clinical Oncology, Medical Oncology Section, AULSS 9 Scaligera, 37045 Verona, Italy
| | - Jacopo Giuliani
- Department of Clinical Oncology, Medical Oncology Section, AULSS 9 Scaligera, 37045 Verona, Italy
| | - Emilia Durante
- Department of Clinical Oncology, Medical Oncology Section, AULSS 9 Scaligera, 37045 Verona, Italy
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, 10093 Torino, Italy
| | - Fabio Turco
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, 10093 Torino, Italy
| | - Erica Palesandro
- Department of Medical Oncology, Cardinal Massaia Hospital, 14100 Asti, Italy
| | | | - Navdeep Singh
- Department of Clinical Oncology, Radiation Oncology and Nuclear Medicine Section, AULSS 9 Scaligera, 37045 Verona, Italy
| | - Marco Muraro
- Department of Clinical Oncology, Radiation Oncology and Nuclear Medicine Section, AULSS 9 Scaligera, 37045 Verona, Italy
| | - Fernando Munoz
- Radiation Oncology TomoTherapy Center, Hospital of Aosta, 11000 Aosta, Italy
| | - Francesco Fiorica
- Department of Clinical Oncology, Medical Oncology Section, AULSS 9 Scaligera, 37045 Verona, Italy; Department of Clinical Oncology, Radiation Oncology and Nuclear Medicine Section, AULSS 9 Scaligera, 37045 Verona, Italy
| |
Collapse
|
9
|
Nguyen NP, Chirila ME, Page BR, Vinh-Hung V, Gorobets O, Mohammadianpanah M, Giap H, Arenas M, Bonet M, Lara PC, Kim L, Dutheil F, Lehrman D, Montes LZ, Tlili G, Dahbi Z, Loganadane G, Blanco SC, Bose S, Natoli E, Li E, Mallum A, Morganti AG. Immunotherapy and stereotactic body radiotherapy for older patients with non-metastatic renal cancer unfit for surgery or decline nephrectomy: practical proposal by the International Geriatric Radiotherapy Group. Front Oncol 2024; 14:1391464. [PMID: 38854736 PMCID: PMC11162108 DOI: 10.3389/fonc.2024.1391464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/15/2024] [Indexed: 06/11/2024] Open
Abstract
The standard of care for non-metastatic renal cancer is surgical resection followed by adjuvant therapy for those at high risk for recurrences. However, for older patients, surgery may not be an option due to the high risk of complications which may result in death. In the past renal cancer was considered to be radio-resistant, and required a higher dose of radiation leading to excessive complications secondary to damage of the normal organs surrounding the cancer. Advances in radiotherapy technique such as stereotactic body radiotherapy (SBRT) has led to the delivery of a tumoricidal dose of radiation with minimal damage to the normal tissue. Excellent local control and survival have been reported for selective patients with small tumors following SBRT. However, for patients with poor prognostic factors such as large tumor size and aggressive histology, there was a higher rate of loco-regional recurrences and distant metastases. Those tumors frequently carry program death ligand 1 (PD-L1) which makes them an ideal target for immunotherapy with check point inhibitors (CPI). Given the synergy between radiotherapy and immunotherapy, we propose an algorithm combining CPI and SBRT for older patients with non-metastatic renal cancer who are not candidates for surgical resection or decline nephrectomy.
Collapse
Affiliation(s)
- Nam P. Nguyen
- Department of Radiation Oncology, Howard University, Washington, DC, United States
| | - Monica-Emilia Chirila
- Department of Clinical Development, MVision AI, Helsinki, Finland
- Department of Radiation Oncology, Amethyst Radiotherapy Centre, Cluj-Napoca, Romania
| | - Brandi R. Page
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD, United States
| | - Vincent Vinh-Hung
- Department of Radiation Oncology, Centre Hospitalier Public du Contentin, Cherbourg-en-Contentin, France
| | - Olena Gorobets
- Department of Oral Surgery, University Hospital of Martinique, Fort-de-France, France
| | - Mohammad Mohammadianpanah
- Colorectal Research Center, Department of Radiation Oncology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Huan Giap
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, United States
| | - Meritxell Arenas
- Department of Radiation Oncology, Sant Joan de Reus University Hospital, University of Rovira, I Virgili, Tarragona, Spain
| | - Marta Bonet
- Department of Radiation Oncology, Arnau de Vilanova University Hospital, Lleida, Spain
| | - Pedro Carlos Lara
- Department of Radiation Oncology, Fernando Pessoria Canarias Las Palmas University, Las Palmas, Spain
| | - Lyndon Kim
- Division of Neuro-Oncology, Mount Sinai Hospital, New York, NY, United States
| | - Fabien Dutheil
- Department of Radiation Oncology, Clinique Sainte Clotilde, Saint-Denis, Reunion Island, France
| | - David Lehrman
- Department of Radiation Oncology, International Geriatric Radiotherapy Group, Washington, DC, United States
| | | | - Ghassen Tlili
- Department of Urology, Sahloul University Hospital, Sousse, Tunisia
| | - Zineb Dahbi
- Department of Radiation Oncology, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | | | - Sergio Calleja Blanco
- Department of Oral Maxillofacial Surgery, Howard University, Washington, DC, United States
| | - Satya Bose
- Department of Radiation Oncology, Howard University, Washington, DC, United States
| | - Elena Natoli
- Department of Radiation Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Radiation Oncology, Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studorium, Bologna University, Bologna, Italy
| | - Eric Li
- Department of Pathology, Howard University, Washington, DC, United States
| | - Abba Mallum
- Department of Radiation Oncology, University of KwaZulu Natal, Durban, South Africa
| | - Alessio G. Morganti
- Department of Radiation Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Radiation Oncology, Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studorium, Bologna University, Bologna, Italy
| |
Collapse
|
10
|
Sammarco E, Rossetti M, Salfi A, Bonato A, Viacava P, Masi G, Galli L, Faviana P. Tumor microenvironment and clinical efficacy of first line immunotherapy-based combinations in metastatic renal cell carcinoma. Med Oncol 2024; 41:150. [PMID: 38740647 PMCID: PMC11090963 DOI: 10.1007/s12032-024-02370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/22/2024] [Indexed: 05/16/2024]
Abstract
The impact of tumor microenvironment (TME) in influencing clinical response to first-line immune checkpoint inhibitor (ICI)-based treatment in advanced renal cell carcinoma (RCC) is unclear. Immunohistochemistry (IHC) could identify biomarkers related to immune checkpoints and immune cell population. This study retrospectively characterized TME from 28 RCC patients who received first line ICI-based therapy through IHC assessment of selected markers and explored preliminary evidence about their possible correlation with treatment efficacy. We found a significantly higher count of CD80+, CD163+ cells and their ratio in RCC with clear cell component compared to those without clear cell features; additionally, patients with metastatic disease at diagnosis were associated with higher expression of CD163+ cells, while higher count of CD4+ cells and CD4+/CD8+ ratio were found in RCC with sarcomatoid features. Patients achieving partial or complete response were associated with lower expression of CD163+ cells (median 28 vs 47; p = 0.049). Furthermore, lower expression of CD163+ was associated with better PFS (median PFS 20.0 vs 4.7 months; HR 0.22 p = 0.011) and OS (median OS NR vs 14.4 months; HR 0.28 p = 0.036). A longer OS was reported in PD-L1 CPS negative patients (median OS NR vs 11.8 months; HR 0.20 p = 0.024). High infiltration of CD163+ macrophages, who typically present "anti-inflammatory" M2-like phenotype, could identify a subgroup of patients with poor survival after receiving first-line ICI.
Collapse
MESH Headings
- Humans
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/metabolism
- Tumor Microenvironment/immunology
- Kidney Neoplasms/pathology
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/immunology
- Kidney Neoplasms/metabolism
- Male
- Female
- Middle Aged
- Aged
- Retrospective Studies
- Immune Checkpoint Inhibitors/therapeutic use
- Adult
- Immunotherapy/methods
- Receptors, Cell Surface/metabolism
- Antigens, CD/metabolism
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/analysis
- Aged, 80 and over
- Treatment Outcome
- Antigens, Differentiation, Myelomonocytic/metabolism
Collapse
Affiliation(s)
- Enrico Sammarco
- Medical Oncology Unit, Livorno Hospital, Azienda Toscana Nord Ovest, Livorno, Italy
| | - Martina Rossetti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Alessia Salfi
- Medical Oncology Unit 2, Santa Chiara Hospital, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Adele Bonato
- Medical Oncology Unit 2, Santa Chiara Hospital, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Paolo Viacava
- Pathology Unit, Livorno Hospital, Azienda Toscana Nord Ovest, Livorno, Italy
| | - Gianluca Masi
- Medical Oncology Unit 2, Santa Chiara Hospital, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Luca Galli
- Medical Oncology Unit 2, Santa Chiara Hospital, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Pinuccia Faviana
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy.
| |
Collapse
|
11
|
Chovet F, Passot AS, Mangon Q, Rouzaire P, Dougé A. [The circulating PD-L1: An emerging predictive biomarker for immune checkpoint inhibitors response]. Bull Cancer 2024; 111:416-427. [PMID: 38438284 DOI: 10.1016/j.bulcan.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 03/06/2024]
Abstract
Immune checkpoint inhibitors (ICI) have recently become the standard of care for many metastatic solid tumors, with considerable improvements in patient prognosis. However, a non-negligible proportion of patients does not respond to this type of treatment, making it essential to identify predictive factors of this response in order to better adapt the therapy. Among the biomarkers that have been most extensively studied in recent years, tumor PD-L1 levels come out on top, with controversial results for predicting response to ICI. The determination of circulating PD-L1 (or soluble PD-L1) in peripheral blood seems to be an interesting emerging biomarker. Indeed, several studies have investigated its prognostic value, and/or its potential predictive value of response to immunotherapy, and it would appear that there is a correlation between the level of soluble PD-L1 and the level of tumor aggressiveness and therefore prognosis. Furthermore, the results suggest that higher PD-L1 levels are associated with a poorer response to immunotherapy, although this remains to be confirmed in large-scale studies.
Collapse
Affiliation(s)
- Fanny Chovet
- Service d'oncologie médicale, CHU Gabriel-Montpied, 63000 Clermont-Ferrand, France
| | - Anne-Sophie Passot
- Service d'oncologie médicale, CHU Gabriel-Montpied, 63000 Clermont-Ferrand, France
| | - Quentin Mangon
- Service d'oncologie médicale, CHU Gabriel-Montpied, 63000 Clermont-Ferrand, France
| | - Paul Rouzaire
- Service d'histocompatibilité et d'immunogénétique, CHU Gabriel-Montpied, 63000 Clermont-Ferrand, France
| | - Aurore Dougé
- Service d'oncologie médicale, CHU Gabriel-Montpied, 63000 Clermont-Ferrand, France.
| |
Collapse
|
12
|
Cimadamore A, Franzese C, Di Loreto C, Blanca A, Lopez-Beltran A, Crestani A, Giannarini G, Tan PH, Carneiro BA, El-Deiry WS, Montironi R, Cheng L. Predictive and prognostic biomarkers in urological tumours. Pathology 2024; 56:228-238. [PMID: 38199927 DOI: 10.1016/j.pathol.2023.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 01/12/2024]
Abstract
Advancements in cutting-edge molecular profiling techniques, such as next-generation sequencing and bioinformatic analytic tools, have allowed researchers to examine tumour biology in detail and stratify patients based on factors linked with clinical outcome and response to therapy. This manuscript highlights the most relevant prognostic and predictive biomarkers in kidney, bladder, prostate and testicular cancers with recognised impact in clinical practice. In bladder and prostate cancer, new genetic acquisitions concerning the biology of tumours have modified the therapeutic scenario and led to the approval of target directed therapies, increasing the quality of patient care. Thus, it has become of paramount importance to choose adequate molecular tests, i.e., FGFR screening for urothelial cancer and BRCA1-2 alterations for prostate cancer, to guide the treatment plan for patients. While no tissue or blood-based biomarkers are currently used in routine clinical practice for renal cell carcinoma and testicular cancers, the field is quickly expanding. In kidney tumours, gene expression signatures might be the key to identify patients who will respond better to immunotherapy or anti-angiogenic drugs. In testicular germ cell tumours, the use of microRNA has outperformed conventional serum biomarkers in the diagnosis of primary tumours, prediction of chemoresistance, follow-up monitoring, and relapse prediction.
Collapse
Affiliation(s)
- Alessia Cimadamore
- Institute of Pathological Anatomy, Department of Medicine (DAME), Udine University, Udine, Italy.
| | - Carmine Franzese
- Department of Urology, Ospedale Santa Maria Della Misericordia di Udine, Udine, Italy
| | - Carla Di Loreto
- Institute of Pathological Anatomy, Department of Medicine (DAME), Udine University, Udine, Italy
| | - Ana Blanca
- Maimonides Biomedical Research Institute of Cordoba, Department of Urology, University Hospital of Reina Sofia, UCO, Cordoba, Spain
| | | | - Alessandro Crestani
- Department of Urology, Ospedale Santa Maria Della Misericordia di Udine, Udine, Italy
| | - Gianluca Giannarini
- Department of Urology, Ospedale Santa Maria Della Misericordia di Udine, Udine, Italy
| | | | - Benedito A Carneiro
- The Legorreta Cancer Center at Brown University, Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Lifespan Academic Medical Center, Providence, RI, USA
| | - Wafik S El-Deiry
- The Legorreta Cancer Center at Brown University, Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Lifespan Academic Medical Center, Providence, RI, USA
| | - Rodolfo Montironi
- Molecular Medicine and Cell Therapy Foundation, Department of Clinical and Molecular Sciences, Polytechnic University of the Marche Region, Ancona, Italy
| | - Liang Cheng
- The Legorreta Cancer Center at Brown University, Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Lifespan Academic Medical Center, Providence, RI, USA.
| |
Collapse
|
13
|
Gökalp Satıcı FE, Karabulut YY. Pathological findings directing immunotherapy in renal cell carcinomas. Immunotherapy 2024; 16:199-204. [PMID: 38214137 DOI: 10.2217/imt-2023-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024] Open
Abstract
Tweetable abstract Immunotherapy options in RCC treatment are increasing day by day. In pursuit of this objective, we have explored the role of pathology throughout the process, from the development to the implementation of immunotherapy in this paper.
Collapse
|
14
|
Stühler V, Alemi B, Rausch S, Stenzl A, Schwab M, Schaeffeler E, Bedke J. Analysis of the immunological markers BTLA, TIM-3, and PD-L1 at the invasion front and tumor center in clear cell renal cell carcinoma. World J Urol 2024; 42:53. [PMID: 38244072 DOI: 10.1007/s00345-023-04721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
PURPOSE Immune checkpoint inhibitors (ICI) are then backbone in the therapy of metastatic renal cell carcinoma (RCC). The aim of this analysis was to explore the different expression of the ICI PD-L1, BTLA, and TIM-3 at the different tumor locations of the invasion front and the tumor center. METHODS Large-area sections of the tumor center and invasion front of 44 stage pT1-4 clear cell RCCs were examined immunohistochemically using antibodies against BTLA, TIM-3, and PD-L1 and subsequently correlated with clinicopathologic data. RESULTS TIM-3 was most strongly expressed at the invasion front (mean ± SD: 84.1 ± 46.6, p = 0.094). BTLA expression was highest in normal tissue, with weak staining in the tumor center and at the invasion front [110.2 vs. 18.6 (p < 0.001) vs. 32.2 (p = 0.248)]. PD-L1 was weakly expressed at the tumor center (n = 5/44) and at the invasion front (n = 5/44). Correlation with clinicopathological parameters revealed significantly higher BTLA expression in ≥ T3 tumors compared to T1/2 tumors (tumor center p = 0.009; invasion front p = 0.005). BTLA-positive tumors at the tumor center correlated with worse CSS (median 48.46 vs. 68.91 months, HR 4.43, p = 0.061). PD-L1 expression was associated with worse CSS (median 1.66 vs. 4.5 years, HR 1.63, p = 0.652). For TIM-3, there were no significant associations with clinicopathological parameters and survival. CONCLUSION The present results show heterogeneous intratumoral and intertumoral expression of the investigated checkpoint receptors PD-L1, BTLA, and TIM-3. In the clinical practice tumor sampling should include different tumor locations, and multiple inhibition of different checkpoint receptors seems reasonable to increase the therapeutic success.
Collapse
Affiliation(s)
- Viktoria Stühler
- Department of Urology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tübingen, Germany
| | - Bilal Alemi
- Department of Urology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tübingen, Germany
| | - Steffen Rausch
- Department of Urology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', Faculty of Medicine, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, 72076, Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Jens Bedke
- Department of Urology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tübingen, Germany.
- Department of Urology and Transplantation Surgery, Klinikum Stuttgart, Kriegsbergstraße 60, 70174, Stuttgart, Germany.
| |
Collapse
|
15
|
Kiyozawa D, Kohashi K, Takamatsu D, Umekita S, Eto M, Kinjo M, Nishiyama K, Taguchi K, Oshiro Y, Kuboyama Y, Oda Y. Comparative analyses of tumour immune microenvironment between collecting duct carcinoma and fumarate hydratase-deficient renal cell carcinoma. J Clin Pathol 2024; 77:105-110. [PMID: 36347592 DOI: 10.1136/jcp-2022-208589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
AIMS Collecting duct carcinoma (CDC) and fumarate hydratase-deficient renal cell carcinoma (FH-deficient RCC) have similar histological morphologies and both show a poor prognosis. Programmed death ligand 1 (PD-L1) inhibitor has been approved for the treatment of RCC. However, tumour-infiltrating neutrophils stimulated by interleukin-8 (IL-8) interfere with PD-L1 inhibitors. Here, we retrospectively analysed PD-L1 and IL-8 expression, and examined its relationship with infiltrating immune cells. METHODS Nine cases of CDC and seven cases of FH-deficient RCC were selected. We defined PD-L1 and IL-8 expression by the Tumour Proportion Score and Combined Positive Score (CPS). We counted the numbers of CD8+, CXCR2+, CD11b+, CD66b+ and CD33+ immune cells located in the tumour components. RESULTS A number of CXCR2+ (p=0.0058), CD11b+ (p=0.0070) and CD66b+ (p=0.0067) immune cells infiltrating into CDC were significantly higher than those infiltrating into FH-deficient RCC. In CDC, PD-L1 expression was correlated with a high density of CD8+ lymphocytes (p=0.0389), but was not in FH-deficient RCC (p=0.6985). IL-8 CPS was significantly higher in CDC than in FH-deficient RCC (p=0.0069). In addition, among the CDC cases, IL-8 CPS showed significant positive correlations with CXCR2+, CD11b+ and CD66b+ immune cell densities (p=0.0250, p=0.0104 and p=0.0374, respectively), whereas FH-deficient RCC showed no significant correlations between IL-8 CPS and immune cell densities. CONCLUSIONS Our results suggest the difference of each tumour microenvironment between CDC and FH-deficient RCC, and IL-8 is a potential therapeutic target for treating CDC, but not FH-deficient RCC.
Collapse
Affiliation(s)
- Daisuke Kiyozawa
- Department of Anatomic Pathology, Kyushu University, Fukuoka, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Kyushu University, Fukuoka, Japan
| | - Dai Takamatsu
- Department of Anatomic Pathology, Kyushu University, Fukuoka, Japan
| | - Shinya Umekita
- Department of Anatomic Pathology, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Kyushu University, Fukuoka, Japan
| | - Mitsuru Kinjo
- Department of Pathology, Steel memorial Yawata Hospital, Kitakyushu, Japan
| | | | - Kenichi Taguchi
- Department of Pathology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Yumi Oshiro
- Department of Pathology, Matsuyama Red Cross Hospital, Matsuyama, Ehime, Japan
| | - Yusuke Kuboyama
- Department of Pathology, Oita Red Cross Hospital, Oita, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
Cobankent Aytekin E, Unal B, Bassorgun CI, Ozkan O. Clinicopathologic Evaluation of CD80, CD86, and PD-L1 Expressions with Immunohistochemical Methods in Malignant Melanoma Patients. Turk Patoloji Derg 2024; 40:16-26. [PMID: 37614091 PMCID: PMC10823788 DOI: 10.5146/tjpath.2023.01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/27/2023] [Indexed: 08/25/2023] Open
Abstract
OBJECTIVE Diagnostic and prognostic biomarkers for malignant melanoma are crucial for treatment and for developing targeted therapies. Malignant melanoma is a highly immunogenic tumor, and its regression, treatment, and prognostic evaluation are directly related to escape from immune destruction. Therefore, we aimed to determine the expression levels of CD80, CD86, and PD -L1 in malignant melanoma tissue samples by immunohistochemistry and to investigate the possible relationship between these proteins and the clinicopathological features in this study. MATERIAL AND METHODS Hematoxylin and eosin staining and immunohistochemical staining for CD80, CD86, and PD-L1 were evaluated for clinical data, survival, prognosis, tumor location, malignant melanoma subtypes, tumor size, and prognostic findings. RESULTS Higher survival rates were observed in patients with lower PD-L1 staining scores in the tumor. The 5-year survival was higher in patients with CD80-positive and CD86-positive biopsies. Mortality was lower in superficial spreading melanoma and Lentigo maligna melanoma types, whereas staining positivity of CD80 and CD86 was higher. Furthermore, a relationship between clinical stage and Breslow thickness ( < 2mm/≥2mm), tumor ulceration, lymph node metastasis, and CD80 and CD86 expression was also identified. CONCLUSION Our findings suggest that PD-L1, CD80, and CD86 expression are essential in malignant melanoma and could be used as prognostic markers.
Collapse
Affiliation(s)
| | - Betul Unal
- Department of Pathology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | | | - Ozlenen Ozkan
- Department of Plastic and Reconstructive Surgery, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
17
|
Tariki MS, Barberan CCG, Torres JA, Ruano APC, Ferreira Costa DDJ, Braun AC, da Silva Alves V, de Cássio Zequi S, da Costa WH, Fay AP, Torrezan G, Carraro DM, Domingos Chinen LT. Circulating tumor cells as a predictor and prognostic tool for metastatic clear cell renal carcinoma: An immunocytochemistry and genomic analysis. Pathol Res Pract 2024; 253:154918. [PMID: 37995423 DOI: 10.1016/j.prp.2023.154918] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Treatment of metastatic clear cell renal carcinoma (mccRCC) has changed dramatically over the past 20 years, without improvement in the development of biomarkers. Recently, circulating tumor cells (CTCs) have been validated as a prognostic and predictive tool for many solid tumors. OBJECTIVE We evaluated CTCs in blood samples obtained from patients diagnosed with mccRCC. Comparisons of CTC counts, protein expression profiling, and DNA mutants were made in relation to overall survival and progression-free survival. METHODS CTCs were isolated from 10 mL blood samples using the ISET® system (Isolation by SizE of Tumor Cells; Rarecells, France) and counted. Protein expression was evaluated in immunocytochemistry assays. DNA mutations were identified with next generation sequencing (NGS). RESULTS Blood samples (10 mL) were collected from 12 patients with mccRCC before the start of first-line systemic therapy, and again 30 and 60 days after the start of treatment. All 12 patients had CTCs detected at baseline (median, 1.5 CTCs/mL; range: 0.25-7.75). Patients with CTC counts greater than the median had two or more metastatic sites and exhibited worse progression-free survival (19.7 months) compared to those with CTC counts less than the median (31.1 months). Disease progression was observed in 7/12 patients during the study. Five of these patients had baseline CTC counts greater than the median, one had higher CTC levels at the second blood collection, and one patient had CTCs present at 1 CTC/mL which positively stained for PD-L1, N-cadherin, VEGF, and SETD2. CTC DNA from six patients with worse outcomes was subjected to NGS. However, no conclusions could be made due to the low variant allele frequencies. CONCLUSION Detection of CTCs in patients with mccRCC receiving first-line treatment is a feasible tool with prognostic potential since increased numbers of CTCs were found to be associated with metastasis and disease progression.
Collapse
Affiliation(s)
- Milena Shizue Tariki
- Medical Oncology Department, A.C. Camargo Cancer Center, São Paulo 01509-900, Brazil.
| | | | | | | | | | - Alexcia Camila Braun
- International Research Center, A.C. Camargo Cancer Center, São Paulo 01508-010, Brazil
| | | | - Stenio de Cássio Zequi
- Department of Urology, Fundação Antônio Prudente, A.C. Camargo Cancer Center, São Paulo 01509-900, Brazil; National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo 01509-900, Brazil; Graduate School, Department of Surgery, Division of Urology, São Paulo Federal University, São Paulo 04024-002, Brazil
| | - Walter Henriques da Costa
- Department of Urology, Fundação Antônio Prudente, A.C. Camargo Cancer Center, São Paulo 01509-900, Brazil
| | - André P Fay
- PUCRS School of Medicine, Rio Grande do Sul 90619-900, Brazil
| | - Giovana Torrezan
- International Research Center, A.C. Camargo Cancer Center, São Paulo 01508-010, Brazil
| | - Dirce M Carraro
- International Research Center, A.C. Camargo Cancer Center, São Paulo 01508-010, Brazil
| | - Ludmilla T Domingos Chinen
- International Research Center, A.C. Camargo Cancer Center, São Paulo 01508-010, Brazil; Associação Beneficente Síria, HCor, São Paulo 04004-030, Brazil; Hospital Amaral Carvalho, Jaú, São Paulo 17210-080, Brazil
| |
Collapse
|
18
|
Méndez-Vidal MJ, Lázaro Quintela M, Lainez-Milagro N, Perez-Valderrama B, Suárez Rodriguez C, Arranz Arija JÁ, Peláez Fernández I, Gallardo Díaz E, Lambea Sorrosal J, González-del-Alba A. SEOM SOGUG clinical guideline for treatment of kidney cancer (2022). Clin Transl Oncol 2023; 25:2732-2748. [PMID: 37556095 PMCID: PMC10425490 DOI: 10.1007/s12094-023-03276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 08/10/2023]
Abstract
Renal cancer is the seventh most common cancer in men and the tenth in women. The aim of this article is to review the diagnosis, treatment, and follow-up of renal carcinoma accompanied by recommendations with new evidence and treatment algorithms. A new pathologic classification of RCC by the World Health Organization (WHO) was published in 2022 and this classification would be considered a "bridge" to a future molecular classification. For patients with localized disease, surgery is the treatment of choice with nephron-sparing surgery recommended when feasible. Adjuvant treatment with pembrolizumab is an option for intermediate-or high-risk cases, as well as patients after complete resection of metastatic disease. More data are needed in the future, including positive overall survival data. Clinical prognostic classification, preferably IMDC, should be used for treatment decision making in mRCC. Cytoreductive nephrectomy should not be deemed mandatory in individuals with intermediate-poor IMDC/MSKCC risk who require systemic therapy. Metastasectomy can be contemplated in selected subjects with a limited number of metastases or long metachronous disease-free interval. For the population of patients with metastatic ccRCC as a whole, the combination of pembrolizumab-axitinib, nivolumab-cabozantinib, or pembrolizumab-lenvatinib can be considered as the first option based on the benefit obtained in OS versus sunitinib. In cases that have an intermediate IMDC and poor prognosis, the combination of ipilimumab and nivolumab has demonstrated superior OS compared to sunitinib. As for individuals with advanced RCC previously treated with one or two antiangiogenic tyrosine-kinase inhibitors, nivolumab and cabozantinib are the options of choice. When there is progression following initial immunotherapy-based treatment, we recommend treatment with an antiangiogenic tyrosine-kinase inhibitor. While no clear sequence can be advocated, medical oncologists and patients should be aware of the recent advances and new strategies that improve survival and quality of life in the setting of metastatic RC.
Collapse
Affiliation(s)
- María José Méndez-Vidal
- Medical Oncology Department, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Martin Lázaro Quintela
- Medical Oncology Department, Hospital Alvaro Cunqueiro-Complejo Hospitalario Universitario de Vigo, Pontevedra, Spain
| | - Nuria Lainez-Milagro
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Pamplona, Spain
| | | | | | | | | | | | - Julio Lambea Sorrosal
- Medical Oncology Department, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | | |
Collapse
|
19
|
Anghelone A, Strusi A, Scala A, Panebianco M, Ciccarese C, Iacovelli R. 2023 ASCO genitourinary cancers symposium: focus on renal cell carcinoma. Expert Rev Anticancer Ther 2023; 23:669-672. [PMID: 37246571 DOI: 10.1080/14737140.2023.2218091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
This article describes the main acquisitions of renal cell carcinoma (RCC) management presented during the 2023 American Society of Clinical Oncology (ASCO) Genitourinary Cancers Symposium. In particular, the efficacy of adjuvant pembrolizumab in patients with resected renal cell carcinoma (RCC) at increased risk of recurrence was confirmed through a subgroup analysis. In the metastatic setting, the updated analysis of the CheckMate 9ER study confirmed the efficacy in terms of overall survival (OS) of the combination of nivolumab plus cabozantinib; of note, this survival advantage was clear in the subgroup of patients at poor IMDC prognosis, but not in favorable IMDC risk group patients. As concern the triplet therapy (i.e. nivolumab+ipilumumab+cabozantinib), the updated analysis of the COSMIC-313 study confirmed a significant PFS advantage in the subgroup of mRCC patients at intermediate IMDC risk, while the lack of benefit in the poor risk group supports the critical role of immunotherapy (but not of VEGFR-TKIs) in this poor prognosis subgroup of patients. Finally, the activity of cabozantinib as second-line therapy after progression to ICI-based combinations was prospectively assessed. This 2023 ASCO Genitourinary Cancer Symposium laid the foundations for further knowledge development necessary for an increasingly personalized management of mRCC.
Collapse
Affiliation(s)
| | - Alessandro Strusi
- Medical Oncology Unit, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Alessandro Scala
- Medical Oncology Unit, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Martina Panebianco
- Medical Oncology Unit, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Chiara Ciccarese
- Medical Oncology Unit, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Roberto Iacovelli
- Medical Oncology Unit, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
20
|
Mastrolia I, Catani V, Oltrecolli M, Pipitone S, Vitale MG, Masciale V, Chiavelli C, Bortolotti CA, Nasso C, Grisendi G, Sabbatini R, Dominici M. Chasing the Role of miRNAs in RCC: From Free-Circulating to Extracellular-Vesicle-Derived Biomarkers. BIOLOGY 2023; 12:877. [PMID: 37372161 DOI: 10.3390/biology12060877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Renal cell carcinoma (RCC) is the second most common cancer of the urinary system. The current therapeutic strategies are based on partial or total nephrectomy and/or targeted therapies based on immune checkpoint inhibitors to which patients are often refractory. Preventive and screening strategies do not exist and the few available biomarkers for RCC are characterized by a lack of sensitivity, outlining the need for novel noninvasive and sensitive biomarkers for early diagnosis and better disease monitoring. Blood liquid biopsy (LB) is a non- or minimally invasive procedure for a more representative view of tumor heterogeneity than a tissue biopsy, potentially allowing the real-time monitoring of cancer evolution. Growing interest is focused on the extracellular vesicles (EVs) secreted by either healthy or tumoral cells and recovered in a variety of biological matrices, blood included. EVs are involved in cell-to-cell crosstalk transferring their mRNAs, microRNAs (miRNAs), and protein content. In particular, transferred miRNAs may regulate tumorigenesis and proliferation also impacting resistance to apoptosis, thus representing potential useful biomarkers. Here, we present the latest efforts in the identification of circulating miRNAs in blood samples, focusing on the potential use of EV-derived miRNAs as RCC diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Ilenia Mastrolia
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Virginia Catani
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Marco Oltrecolli
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Stefania Pipitone
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Maria Giuseppa Vitale
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Valentina Masciale
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Chiara Chiavelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | | | - Cecilia Nasso
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
- Division of Oncology, S. Corona Hospital, 17027 Pietra Ligure, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Roberto Sabbatini
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| |
Collapse
|
21
|
Wang S, Zhou X, Niu S, Chen L, Zhang H, Chen H, Zhou F. Assessment of HER2 in Gastric-Type Endocervical Adenocarcinoma and its Prognostic Significance. Mod Pathol 2023; 36:100148. [PMID: 36841435 DOI: 10.1016/j.modpat.2023.100148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/27/2023]
Abstract
As the most common type of human papillomavirus-independent endocervical adenocarcinomas (ECAs), gastric-type endocervical adenocarcinomas (GEAs) account for approximately 10% of all ECAs. Although anti-HER2 therapy has been proven effective in many cancers, it has not been used in ECAs, including GEAs, which is at least partly due to the lack of a well-defined guideline. Limited available data regarding HER2 in GEAs and ECAs have considerable variations likely caused by variations in the tumor type selection, testing methods, and scoring criteria. Here, we selected 58 GEA cases to examine the HER2 status using immunohistochemistry and fluorescent in situ hybridization and investigate the prognostic value and their association with other known or potential prognostic factors. When strong complete or lateral/basolateral membranous reactivity in ≥10% tumor cells was used to define HER2 positivity, relatively high prevalence of HER2 overexpression (10/58[17.2%]) and amplification (9/58 [15.5%]), as well as high immunohistochemistry-fluorescent in situ hybridization concordance rate (9/10 [90%]) was found in GEAs. A lateral/basolateral staining pattern ("U-shaped") was observed, at least focally, in most of HER2-positive (3+) and equivocal (2+) tumors. Notably, considerable heterogeneity of HER2 expression was observed in HER2 positive and equivocal cases (80.0% and 83.3%, respectively). HER2 overexpression and amplification were associated with worse progression-free survival (P = .047 and P = .032, respectively). Programmed death-ligand 1 expression was associated with worse progression-free survival (P = .032), whereas mutant-type p53 demonstrated no prognostic significance. Our work laid a solid foundation for the eventual development of a future standard HER2 testing guideline for GEAs.
Collapse
Affiliation(s)
- Su Wang
- Department of Pathology, Zhejiang University School of Medicine Women's Hospital, Hangzhou, Zhejiang Province, China
| | - Xin Zhou
- Department of Pathology, Zhejiang University School of Medicine Women's Hospital, Hangzhou, Zhejiang Province, China
| | - Shuang Niu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas
| | - Lili Chen
- Department of Gynecology, Zhejiang University School of Medicine Women's Hospital, Hangzhou, Zhejiang Province, China
| | - Huijuan Zhang
- Departments of Pathology, International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hao Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas.
| | - Feng Zhou
- Department of Pathology, Zhejiang University School of Medicine Women's Hospital, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
22
|
Shin K, Kim J, Park SJ, Lee MA, Park JM, Choi MG, Kang D, Song KY, Lee HH, Seo HS, Lee SH, Kim B, Kim O, Park J, Kang N, Kim IH. Prognostic value of soluble PD-L1 and exosomal PD-L1 in advanced gastric cancer patients receiving systemic chemotherapy. Sci Rep 2023; 13:6952. [PMID: 37117200 PMCID: PMC10147600 DOI: 10.1038/s41598-023-33128-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/07/2023] [Indexed: 04/30/2023] Open
Abstract
The prognostic role of soluble PD-L1 (sPD-L1) and exosomal PD-L1 (exoPD-L1) in patients with gastric cancer (GC) receiving systemic chemotherapy remains unelucidated. Thus, we examined their prognostic significance in patients with advanced GC. Blood samples were obtained from 99 patients with advanced GC receiving first-line chemotherapy. Serum-derived exosomes were isolated by centrifugation and polymer precipitation. The correlation between serum-derived exoPD-L1, plasma sPD-L1, immune-related markers, and circulating immune cells was evaluated. Patients were divided into two groups according to pretreatment sPD-L1 and exoPD-L1 levels: low sPD-L1 and high sPD-L1 groups, low exoPD-L1 and high exoPD-L1 groups. Patients with low sPD-L1 level before treatment (< 9.32 pg/mL) showed significantly better overall survival (OS) and progression-free survival (PFS) than those with high sPD-L1 level (≥ 9.32 pg/mL). The low exoPD-L1 group (< 10.21 pg/mL) showed a tendency of longer PFS than the high exoPD-L1 group (≥ 10.21 pg/mL). Pretreatment sPD-L1 was an independent prognostic factor for OS in multivariate analysis. exoPD-L1 was associated with systemic inflammation markers, immunomodulatory cytokines, and T cells, while sPD-L1 was associated with tumor markers. Pretreatment plasma-derived sPD-L1 level could be used as a prognostic marker for patients receiving cytotoxic chemotherapy. Serum-derived exoPD-L1 may reflect the immunosuppressive state of patients with advanced GC.
Collapse
Affiliation(s)
- Kabsoo Shin
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Joori Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Se Jun Park
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Myung Ah Lee
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jae Myung Park
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Myung-Gyu Choi
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Donghoon Kang
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyo Young Song
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Han Hong Lee
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ho Seok Seo
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung Hak Lee
- Department of Clinical Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Bohyun Kim
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Okran Kim
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Juyeon Park
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Nahyeon Kang
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
23
|
Expresión de PD-L1 en cáncer renal, características pronósticas y utilidad en la práctica clínica habitual. Actas Urol Esp 2023. [DOI: 10.1016/j.acuro.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
24
|
PD-L1, CD4+, and CD8+ Tumor-Infiltrating Lymphocytes (TILs) Expression Profiles in Melanoma Tumor Microenvironment Cells. J Pers Med 2023; 13:jpm13020221. [PMID: 36836455 PMCID: PMC9965691 DOI: 10.3390/jpm13020221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
(1) Background: Because melanoma is an aggressive tumor with an unfavorable prognosis, we aimed to characterize the PD-L1 expression in melanomas in association with T cell infiltrates because PD-1/PD-L1 blockade represents the target in treating melanoma strategy. (2) Methods: The immunohistochemical manual quantitative methods of PD-L1, CD4, and CD8 TILs were performed in melanoma tumor microenvironment cells. (3) Results: Most of the PD-L1 positive, expressing tumors, have a moderate score of CD4+ TILs and CD8+TILs (5-50% of tumor area) in tumoral melanoma environment cells. The PD-L1 expression in TILs was correlated with different degrees of lymphocytic infiltration described by the Clark system (X2 = 8.383, p = 0.020). PD-L1 expression was observed often in melanoma cases, with more than 2-4 mm of Breslow tumor thickness being the associated parameters (X2 = 9.933, p = 0.014). (4) Conclusions: PD-L1 expression represents a predictive biomarker with very good accuracy for discriminating the presence or absence of malign tumoral melanoma cells. PD-L1 expression was an independent predictor of good prognosis in patients with melanomas.
Collapse
|
25
|
Walker RR, Rentia Z, Chiappinelli KB. Epigenetically programmed resistance to chemo- and immuno-therapies. Adv Cancer Res 2023; 158:41-71. [PMID: 36990538 PMCID: PMC10184181 DOI: 10.1016/bs.acr.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Resistance to cancer treatments remains a major barrier in developing cancer cures. While promising combination chemotherapy treatments and novel immunotherapies have improved patient outcomes, resistance to these treatments remains poorly understood. New insights into the dysregulation of the epigenome show how it promotes tumor growth and resistance to therapy. By altering control of gene expression, tumor cells can evade immune cell recognition, ignore apoptotic cues, and reverse DNA damage induced by chemotherapies. In this chapter, we summarize the data on epigenetic remodeling during cancer progression and treatment that enable cancer cell survival and describe how these epigenetic changes are being targeted clinically to overcome resistance.
Collapse
Affiliation(s)
- Reddick R Walker
- The George Washington University Cancer Center (GWCC), Washington, DC, United States; Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, United States
| | - Zainab Rentia
- The George Washington University Cancer Center (GWCC), Washington, DC, United States
| | - Katherine B Chiappinelli
- The George Washington University Cancer Center (GWCC), Washington, DC, United States; Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, United States.
| |
Collapse
|
26
|
Kase AM, George DJ, Ramalingam S. Clear Cell Renal Cell Carcinoma: From Biology to Treatment. Cancers (Basel) 2023; 15:665. [PMID: 36765622 PMCID: PMC9913203 DOI: 10.3390/cancers15030665] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
The majority of kidney cancers are detected incidentally and typically diagnosed at a localized stage, however, the development of regional or distant disease occurs in one-third of patients. Over 90% of kidney tumors are renal cell carcinomas, of which, clear cell is the most predominate histologic subtype. Von Hippel Lindau (VHL) gene alterations result in the overexpression of growth factors that are central to the pathogenesis of clear cell carcinoma. The therapeutic strategies have revolved around this tumor suppressor gene and have led to the approval of tyrosine kinase inhibitors (TKI) targeting the vascular endothelial growth factor (VEGF) axis. The treatment paradigm shifted with the introduction of immune checkpoint inhibitors (ICI) and programed death-1 (PD-1) inhibition, leading to durable response rates and improved survival. Combinations of TKI and/or ICIs have become the standard of care for advanced clear cell renal cell carcinoma (ccRCC), changing the outlook for patients, with several new and promising therapeutic targets under development.
Collapse
Affiliation(s)
- Adam M. Kase
- Mayo Clinic, Division of Hematology Oncology, Jacksonville, FL 32224, USA
| | - Daniel J. George
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sundhar Ramalingam
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
27
|
Ye S, Li S, Qin L, Zheng W, Liu B, Li X, Ren Z, Zhao H, Hu X, Ye N, Li G. GBP2 promotes clear cell renal cell carcinoma progression through immune infiltration and regulation of PD‑L1 expression via STAT1 signaling. Oncol Rep 2023; 49:49. [PMID: 36660930 PMCID: PMC9887463 DOI: 10.3892/or.2023.8486] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Guanylate‑binding protein 2 (GBP2) has been widely studied in cancer, however, its potential role in clear cell renal cell carcinoma (ccRCC) is not fully elucidated. The present study aimed to explore the effect of GBP2 on tumor progression and its possible underlying molecular mechanisms in ccRCC. The Cancer Genome Atlas, Gene Expression Omnibus, Cancer Cell Line Encyclopedia databases, and several bioinformatics analysis tools, such as Gene Expression Profiling Interactive Analysis 2, Kaplan‑Meier plotter, UALCAN, LinkedOmics, Metascape, GeneMANIA and Tumor Immune Estimation Resource, were used to characterize the functional relationship between GBP2 and ccRCC. Focusing on the association between GBP2 and programmed death ligand 1 (PD‑L1) in vitro, the regulatory mechanism was investigated by knockdown and overexpression of GBP2 in Caki‑1 and 786‑O cells using reverse transcription‑quantitative PCR, western blotting and co‑immunoprecipitation techniques. The results indicated that GBP2 was commonly upregulated in ccRCC, correlating with worse prognosis. In addition, GBP2 expression levels were positively associated with different patterns of immune cell infiltration, suggesting that the GBP2 gene regulates PD‑L1 expression via the signal transducer and activator of transcription 1 (STAT1) pathway. The present study suggested that GBP2 regulates tumor immune infiltration and promotes tumor immune escape through PD‑L1 expression, revealing a potential immunotherapeutic target for ccRCC.
Collapse
Affiliation(s)
- Shujiang Ye
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Siyu Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Lei Qin
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Wei Zheng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Bin Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Xiaohui Li
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhenhua Ren
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Huaiming Zhao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Xudong Hu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Nan Ye
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Guangyuan Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China,The Lu'an Hospital Affiliated to Anhui Medical University, Lu'an, Anhui 237005, P.R. China,The Lu'an People's Hospital, Lu'an, Anhui 237005, P.R. China,Correspondence to: Dr Guangyuan Li, Department of Urology, The First Affiliated Hospital of Anhui Medical University, 100 Huaihai Avenue, Hefei, Anhui 230012, P.R. China, E-mail:
| |
Collapse
|
28
|
Delcuratolo MD, Tucci M, Turco F, Di Stefano RF, Ungaro A, Audisio M, Samuelly A, Brusa F, Audisio A, Di Maio M, Scagliotti GV, Buttigliero C. Therapeutic sequencing in advanced renal cell carcinoma: How to choose considering clinical and biological factors. Crit Rev Oncol Hematol 2023; 181:103881. [PMID: 36427772 DOI: 10.1016/j.critrevonc.2022.103881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
In the last fifteen years a better understanding of the biological processes promoting tumour growth and progression led to an impressive revolution in metastatic renal cell carcinoma (mRCC) treatment landscape. Angiogenesis plays a critical role in the pathogenesis of RCC. These biological evidences led to targeted therapies interfering with vascular endothelial growth factor and mammalian target of rapamycin pathway. Another big step in the RCC therapeutic landscape was recently made because of the understanding of the interplay between angiogenesis and immune cells. Dual immune checkpoint inhibitors (ICIs) and ICIs plus tyrosine kinase inhibitors (TKI) combinations have been approved considering overall survival benefit compared to targeted therapies as first line treatment. We summarize the activity and the biological rationale of ICIs combinations as mRCC first line therapy. Additionally, we review the clinical and biological criteria useful to guide clinicians in the choice of treatment sequencing focusing on ICIs combinations resistance mechanisms.
Collapse
Affiliation(s)
- Marco Donatello Delcuratolo
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Marcello Tucci
- Medical Oncology Department, Cardinal Massaia Hospital, Asti 14100, Italy.
| | - Fabio Turco
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Rosario Francesco Di Stefano
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Antonio Ungaro
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Marco Audisio
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Alessandro Samuelly
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Federica Brusa
- Medical Oncology Department, Cardinal Massaia Hospital, Asti 14100, Italy
| | - Alessandro Audisio
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Turin, at Division of Medical Oncology, Ordine Mauriziano Hospital, Via Magellano 1, Turin 10028, Italy
| | - Giorgio Vittorio Scagliotti
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| |
Collapse
|
29
|
Jahangir M, Yazdani O, Kahrizi MS, Soltanzadeh S, Javididashtbayaz H, Mivefroshan A, Ilkhani S, Esbati R. Clinical potential of PD-1/PD-L1 blockade therapy for renal cell carcinoma (RCC): a rapidly evolving strategy. Cancer Cell Int 2022; 22:401. [PMID: 36510217 PMCID: PMC9743549 DOI: 10.1186/s12935-022-02816-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade therapy has become a game-changing therapeutic approach revolutionizing the treatment setting of human malignancies, such as renal cell carcinoma (RCC). Despite the remarkable clinical activity of anti-PD-1 or anti-PD-L1 monoclonal antibodies, only a small portion of patients exhibit a positive response to PD-1/PD-L1 blockade therapy, and the primary or acquired resistance might ultimately favor cancer development in patients with clinical responses. In light of this, recent reports have signified that the addition of other therapeutic modalities to PD-1/PD-L1 blockade therapy might improve clinical responses in advanced RCC patients. Until, combination therapy with PD-1/PD-L1 blockade therapy plus cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitor (ipilimumab) or various vascular endothelial growth factor receptors (VEGFRs) inhibitors axitinib, such as axitinib and cabozantinib, has been approved by the United States Food and Drug Administration (FDA) as first-line treatment for metastatic RCC. In the present review, we have focused on the therapeutic benefits of the PD-1/PD-L1 blockade therapy as a single agent or in combination with other conventional or innovative targeted therapies in RCC patients. We also offer a glimpse into the well-determined prognostic factor associated with the clinical response of RCC patients to PD-1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Mohammadsaleh Jahangir
- grid.411746.10000 0004 4911 7066Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Omid Yazdani
- grid.411600.2School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Saeed Kahrizi
- grid.411705.60000 0001 0166 0922Department of Surgery, Alborz University of Medical Sciences, Karaj, Alborz Iran
| | - Sara Soltanzadeh
- grid.411705.60000 0001 0166 0922Department of Radiation Oncology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Javididashtbayaz
- grid.411768.d0000 0004 1756 1744Baran Oncology Clinic, Medical Faculty, Islamic Azad University of Mashhad, Mashhad, Iran
| | - Azam Mivefroshan
- grid.412763.50000 0004 0442 8645Department of Adult Nephrology, Urmia University of Medical Sciences, Urmia, Iran
| | - Saba Ilkhani
- grid.411600.2Department of Surgery and Vascular Surgery, Shohada-ye-Tajrish Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Romina Esbati
- grid.411600.2School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Guo T, Wang T, Zhang J, Chen S, Wang X. HIF1A predicts the efficacy of anti-PD-1 therapy in advanced clear cell renal cell carcinoma. Transl Oncol 2022; 26:101554. [PMID: 36191462 PMCID: PMC9530654 DOI: 10.1016/j.tranon.2022.101554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 11/01/2022] Open
Abstract
Immunotherapy for cancer has become a revolutionary treatment, with the progress of immunological research on cancer. Cancer patients have also become more diversified in drug selection. Individualized medical care of patients is more important in the era of precision medicine. For advanced clear cell renal cell carcinoma (ccRCC) patients, immunotherapy and targeted therapy are the two most important treatments. The development of biomarkers for predicting the efficacy of immunotherapy or targeted therapy is indispensable for individualized medicine. There is no clear biomarker that can accurately predict the efficacy of immunotherapy for advanced ccRCC patients. Our study found that HIF1A could be used as a biomarker for predicting the anti-PD-1 therapy efficacy of patients with advanced ccRCC, and its prediction accuracy was even stronger than that of PD-1/PD-L1. HIF1A is expected to help patients with advanced ccRCC choose therapeutic drugs.
Collapse
Affiliation(s)
- Tuanjie Guo
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siteng Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
31
|
The Prognostic Value of Plasma Programmed Death Protein-1 (PD-1) and Programmed Death-Ligand 1 (PD-L1) in Patients with Gastrointestinal Stromal Tumor. Cancers (Basel) 2022; 14:cancers14235753. [PMID: 36497235 PMCID: PMC9737373 DOI: 10.3390/cancers14235753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND This study investigates the prognostic value of plasma Programmed Death Protein-1 (PD-1) and Programmed Death-Ligand 1 (PD-L1) concentrations in patients with Gastrointestinal Stromal Tumor (GIST). METHODS Patients with GIST were included (n = 157) from the two Danish sarcoma centers, independent of disease- and treatment status. The patients were divided into three subgroups; 1: patients with localized disease who underwent radical surgery; 2: patients with local, locally advanced, or metastatic disease; and 3: patients without measurable disease who had undergone radical surgery. Sensitive electrochemiluminescence immune-assays were used to determine PD-1 and PD-L1 concentration in plasma samples. The primary endpoint was the PFS. RESULTS No patients progressed in group 1 (n = 15), 34 progressed in group 2 (n = 122), and three progressed in group 3 (n = 20). Significantly higher plasma concentrations of PD-1 (p = 0.0023) and PD-L1 (0.012) were found in patients in group 2 compared to PD-1/PD-L1 levels in postoperative plasma samples from patient group 1. Patients with active GIST having a plasma concentration of PD-L1 above the cutoff (225 pg/mL) had a significantly poorer prognosis compared to patients with plasma PD-L1 concentration below the cutoff. CONCLUSIONS Plasma PD-L1 shows potential as a prognostic biomarker in patients with GIST and should be further evaluated.
Collapse
|
32
|
Parosanu A, Stanciu IM, Pirlog C, Orlov Slavu C, Cotan H, Iaciu C, Popa AM, Olaru M, Moldoveanu O, Catalin B, Nitipir C. Prognostic Models for Renal Cell Carcinoma in the Era of Immune Checkpoint Therapy. Cureus 2022; 14:e30821. [DOI: 10.7759/cureus.30821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
|
33
|
Expression of Programmed Death-1 Ligand in Renal Cell Carcinoma and Its Relationship with Pathologic Findings and Disease-Free Survival. Nephrourol Mon 2022. [DOI: 10.5812/numonthly-127476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Renal cell carcinoma (RCC) is an invasive malignancy of kidney origin. The programmed death-1 ligand (PD-L1) with its receptor (PD-1) on T-cells can inactivate antitumor response and possibly lead to poor outcomes in patients with RCC. Methods: Our study assessed the expression of PD-L1 by immunohistochemical staining on 86 radical or partial nephrectomy samples with RCC diagnoses with diverse types, tumor grades, and stages. Tumor specimens were collected from the pathology archive of 2014 - 2017 in Sina Hospital, Tehran, Iran. Results: Out of 86 studied RCC samples, 68 cases (79.1%) were clear cell types. PD-L1 expression was observed more in non-clear cell carcinoma samples than in clear cell carcinoma (P = 0.008). PD-L1 expression had significant relationships with nuclear grade and tumor necrosis (P = 0.025 and 0.010, respectively). However, PD-L1 expression was not correlated with tumor size, lymphovascular invasion, and sarcomatoid differentiation. The disease-free survival rate in patients with PD-L1 expression was significantly less than in patients with PD-L1 negative staining (P = 0.032). Conclusions: According to our findings, PD-L1 could be regarded as an important biomarker with worse prognosis and aggressive clinicopathologic findings in patients with RCC.
Collapse
|
34
|
Yu D, Zhang X, Gao L, Qian S, Tang H, Shao N. Development and validation of a novel immunotype for prediction of overall survival in patients with clear cell renal cell carcinoma. Front Oncol 2022; 12:924072. [PMID: 36237315 PMCID: PMC9552763 DOI: 10.3389/fonc.2022.924072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/06/2022] [Indexed: 11/14/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is a highly immunogenic tumor. The purpose of the present study was to establish a novel immunotype for different immune infiltration and overall survival (OS) of patients with ccRCC. Methods Based on the Cancer Genome Atlas Project (TCGA) database (discovery set), a novel immunotype was established using ssGSEA methods. The databases of Fudan University Shanghai Cancer Center (FUSCC) and Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine (XHH) served as an external validation set. GSEA was carried out to identify the immunotype associated signal transduction pathways. Results A total of 652 ccRCC patients were included in our study. We constructed a novel immunotype of ccRCC to classify patients into three groups: high-immunity, moderate-immunity, and low-immunity. The high-immunity and moderate-immunity groups had higher ImmuneScores, ESTIMATEScores, StromalScores, and lower tumor purity than that of the low-immunity group in both sets. Additionally, the patients from the high-immunity and moderate-immunity groups had longer survival than patients from low-immunity group in both discovery set and validation set (HR = 2.54, 95% CI: 1.56–4.13, p < 0.01; HR = 2.75, 95% CI: 1.24–6.11, p = 0.01). Conclusion In summary, we defined a novel immunotype of ccRCC. The immune types could be used as a clinical predictive tool to identify ccRCC patients with different survival. In addition, the immune-related biological signaling pathway also brought new insights on the mechanism of ccRCC.
Collapse
Affiliation(s)
- Deshui Yu
- Department of Urology, Second People’s Hospital of Wuxi Affiliated to Nanjing Medical University, Wuxi, China
| | - Xuanzhi Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lixia Gao
- Department of Operation Room, Second People’s Hospital of Wuxi Affiliated to Nanjing Medical University, Wuxi, China
| | - Subo Qian
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Tang
- Department of Pathology, The Affiliated WuXi No.2 People’s Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Ning Shao, ; Hong Tang,
| | - Ning Shao
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ning Shao, ; Hong Tang,
| |
Collapse
|
35
|
Rebuzzi SE, Signori A, Stellato M, Santini D, Maruzzo M, De Giorgi U, Pedrazzoli P, Galli L, Zucali PA, Fantinel E, Carella C, Procopio G, Milella M, Boccardo F, Fratino L, Sabbatini R, Ricotta R, Panni S, Massari F, Sorarù M, Santoni M, Cortellini A, Prati V, Soto Parra H, Atzori F, Di Napoli M, Caffo O, Messina M, Morelli F, Prati G, Nolè F, Vignani F, Cavo A, Roviello G, Llaja Obispo MA, Porta C, Buti S, Fornarini G, Banna GL. The prognostic value of baseline and early variations of peripheral blood inflammatory ratios and their cellular components in patients with metastatic renal cell carcinoma treated with nivolumab: The Δ-Meet-URO analysis. Front Oncol 2022; 12:955501. [PMID: 36212433 PMCID: PMC9541611 DOI: 10.3389/fonc.2022.955501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/23/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Treatment choice for metastatic renal cell carcinoma (mRCC) patients is still based on baseline clinical and laboratory factors. METHODS By a pre-specified analysis of the Meet-URO 15 multicentric retrospective study enrolling 571 pretreated mRCC patients receiving nivolumab, baseline and early dynamic variations (Δ) of neutrophil, lymphocyte, and platelet absolute cell counts (ACC) and their inflammatory ratios (IR) were evaluated alongside their association with the best disease response and overall (OS) and progression-free survival (PFS). Multivariable analyses on OS and PFS between baseline and Δ ACC and IR values were investigated with receiving operating curves-based cut-offs. RESULTS The analysis included 422 mRCC patients. Neutrophil-to-lymphocyte ratio (NLR) increased over time due to consistent neutrophil increase (p < 0.001). Higher baseline platelets (p = 0.044) and lower lymphocytes (p = 0.018), increasing neutrophil Δ (p for time-group interaction <0.001), higher baseline IR values (NLR: p = 0.012, SII: p = 0.003, PLR: p = 0.003), increasing NLR and systemic immune-inflammatory index (SII) (i.e., NLR x platelets) Δ (p for interaction time-group = 0.0053 and 0.0435, respectively) were associated with disease progression. OS and PFS were significantly shorter in patients with baseline lower lymphocytes (p < 0.001 for both) and higher platelets (p = 0.004 and p < 0.001, respectively) alongside early neutrophils Δ (p = 0.046 and p = 0.033, respectively). Early neutrophils and NLR Δ were independent prognostic factors for both OS (p = 0.014 and p = 0.011, respectively) and PFS (p = 0.023 and p = 0.001, respectively), alongside baseline NLR (p < 0.001 for both) and other known prognostic variables. CONCLUSIONS Early neutrophils and NLR Δ may represent new dynamic prognostic factors with clinical utility for on-treatment decisions.
Collapse
Affiliation(s)
- Sara Elena Rebuzzi
- Medical Oncology Unit, Ospedale San Paolo, Savona, Italy
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy
| | - Alessio Signori
- Department of Health Sciences, Section of Biostatistics, University of Genova, Genova, Italy
| | - Marco Stellato
- SS Oncologia Medica Genitourinaria, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Daniele Santini
- Department of Medical Oncology, Università Campus Bio-Medico of Roma, Rome, Italy
| | - Marco Maruzzo
- Oncology Unit 1, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
- Medical Oncology Unit, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luca Galli
- Medical Oncology Unit 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Paolo Andrea Zucali
- Department of Biomedical Sciences, Humanitas University, Milano, Italy
- Department of Oncology, IRCCS, Humanitas Clinical and Research Center, Milano, Italy
| | - Emanuela Fantinel
- Department of Oncology, Azienda Ospedaliera Universitaria Integrata di Verona, University of Verona, Verona, Italy
| | - Claudia Carella
- Division of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Giuseppe Procopio
- SS Oncologia Medica Genitourinaria, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Michele Milella
- Department of Oncology, Azienda Ospedaliera Universitaria Integrata di Verona, University of Verona, Verona, Italy
| | - Francesco Boccardo
- Academic Unit of Medical Oncology, IRCCS Ospedale Policlinico San Martino of Genova, Genova, Italy
| | - Lucia Fratino
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano CRO-IRCCS, Aviano, Italy
| | - Roberto Sabbatini
- Medical Oncology Unit, Department of Oncology and Hemathology, University Hospital of Modena, Modena, Italy
| | | | - Stefano Panni
- Medical Oncology Unit, ASSTl– Istituti Ospitalieri Cremona Hospital, Cremona, Italy
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | | | | | - Alessio Cortellini
- Department of Surgery and Cancer, Imperial College London, Faculty of Medicine, Hammersmith Hospital, London, United Kingdom
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Veronica Prati
- Department of Medical Oncology, Ospedale Michele e Pietro Ferrero, Verduno, Italy
| | - Hector Josè Soto Parra
- Department of Oncology, Medical Oncology, University Hospital Policlinico-San Marco, Catania, Italy
| | - Francesco Atzori
- Medical Oncology Department, University Hospital, University of Cagliari, Cagliari, Italy
| | - Marilena Di Napoli
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Orazio Caffo
- Medical Oncology Department, Santa Chiara Hospital, Trento, Italy
| | - Marco Messina
- UOC Oncologia Medica, Istituto Fondazione G. Giglio, Cefalù, Italy
| | | | - Giuseppe Prati
- Department of Oncology and Advanced Technologies AUSL - IRCCS, Reggio Emilia, Italy
| | - Franco Nolè
- Medical Oncology Division of Urogenital and Head and Neck Tumors, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Francesca Vignani
- Division of Medical Oncology, Ordine Mauriziano Hospital, Torino, Italy
| | - Alessia Cavo
- Oncology Unit, Villa Scassi Hospital, Genova, Italy
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Firenze, Firenze, Italy
| | | | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari “A. Moro”, Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Sebastiano Buti
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Fornarini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Giuseppe Luigi Banna
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
| |
Collapse
|
36
|
Donskov F, Pinto CA, Predoiu R, Fox C, Georgsen JB, Skaarup K, Burcu M, Perini R, Steiniche T. Molecular analysis and favorable clinical outcomes in real-world patients with metastatic renal cell carcinoma. Acta Oncol 2022; 61:1268-1277. [DOI: 10.1080/0284186x.2022.2119100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Frede Donskov
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, University Hospital of Southern Denmark, Esbjerg, Denmark
| | | | | | | | | | | | | | | | - Torben Steiniche
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
37
|
Simonetti S, Iuliani M, Stellato M, Cavaliere S, Vincenzi B, Tonini G, Santini D, Pantano F. Extensive plasma proteomic profiling revealed receptor activator of nuclear factor kappa-Β ligand (RANKL) as emerging biomarker of nivolumab clinical benefit in patients with metastatic renal cell carcinoma. J Immunother Cancer 2022; 10:jitc-2022-005136. [PMID: 36104102 PMCID: PMC9476128 DOI: 10.1136/jitc-2022-005136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
Background The advent of immune checkpoint inhibitors (ICIs) have led to a paradigm change in the management of metastatic renal cell carcinoma (mRCC), nevertheless, the benefit of treatment is confined to a limited proportion of patients. Therefore, the identification of predictive biomarkers for response to ICIs represents an unmet clinical need. Here, we performed a large-scale plasma proteomic profile of patients with mRCC, treated with nivolumab, to identify soluble molecules potentially associated with clinical benefit. Methods We analyzed the levels of 507 soluble molecules in the pretreatment plasma of 16 patients with mRCC (discovery set) who received nivolumab therapy as a single agent. The ELISA assay was performed to confirm the protein level of candidate biomarkers associated to clinical benefit in 15 patients with mRCC (validation set). Survival curves of complete cohort were estimated by the Kaplan-Meier method and compared with the log-rank test. Results Out of 507 screened molecules, 135 factors were selected as expressed above background and 12 of them were significantly overexpressed in patients who did not benefit from treatment (non-responders (NR)) compared with responders (R) group. After multiplicity adjustment, receptor activator of nuclear factor kappa-Β ligand (RANKL) was the only molecule that retained the statistical significance (false discovery rate: 0.023). RANKL overexpression in NR patients was confirmed both in discovery (median NR: 528 pg/mL vs median R: 288 pg/mL, p=0.011) and validation set (median NR: 440 pg/mL vs median R: 253 pg/mL, p<0.001). Considering the complete cohort of patients (discovery+validation set), significantly higher RANKL levels were found in patients who primarily progressed from treatment compared with those who had a partial response (p=0.003) or stable disease (p=0.006). Moreover, patients with low RANKL levels had significant improvements in progression-free survival (median 14.0 months vs 3.4 months, p=0.004) and overall survival (median not reached vs 30.1 months, p=0.003). Conclusions Our exploratory study suggests RANKL as a novel independent biomarker of response and survival in patients with mRCC treated with nivolumab.
Collapse
Affiliation(s)
- Sonia Simonetti
- Medical Oncology Department, Campus Bio-Medico University, Roma, Italy
| | - Michele Iuliani
- Medical Oncology Department, Campus Bio-Medico University, Roma, Italy
| | - Marco Stellato
- Medical Oncology Department, Campus Bio-Medico University, Roma, Italy .,Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Silvia Cavaliere
- Medical Oncology Department, Campus Bio-Medico University, Roma, Italy
| | - Bruno Vincenzi
- Medical Oncology Department, Campus Bio-Medico University, Roma, Italy
| | - Giuseppe Tonini
- Medical Oncology Department, Campus Bio-Medico University, Roma, Italy
| | - Daniele Santini
- Medical Oncology Department, Campus Bio-Medico University, Roma, Italy.,UOC Oncologia Universitaria, Sapienza University of Rome - Polo Pontino, Latina, Italy
| | - Francesco Pantano
- Medical Oncology Department, Campus Bio-Medico University, Roma, Italy
| |
Collapse
|
38
|
Tiako Meyo M, Chen J, Goldwasser F, Hirsch L, Huillard O. A Profile of Avelumab Plus Axitinib in the Treatment of Renal Cell Carcinoma. Ther Clin Risk Manag 2022; 18:683-698. [PMID: 35837579 PMCID: PMC9275425 DOI: 10.2147/tcrm.s263832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022] Open
Abstract
Until recently, the approved first-line treatment for metastatic RCC (mRCC) consisted of tyrosine kinase inhibitors (TKI) targeting the vascular endothelial growth factor receptors (VEGFR) monotherapy. The landscape of first-line treatment has been transformed in the last few years with the advent of immune checkpoint inhibitors (ICI) or VEGFR TKI plus ICI combinations. This article focuses on the profile of one of these ICI plus VEGFR TKI combination, avelumab plus axitinib. We detail the characteristics of each drug separately, and then we explore the rationale for their association, its efficacy and the resulting toxicity. Finally, we examine the factors associated with avelumab plus axitinib outcomes, and their impact on therapeutic strategy.
Collapse
Affiliation(s)
- Manuela Tiako Meyo
- Department of Medical Oncology, Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Hôpital Cochin, Paris, France.,Immunomodulatory Therapies Multidisciplinary Study Group (CERTIM), AP-HP, APHP.Centre, Hôpital Cochin, Paris, France
| | - Jeanne Chen
- Department of Medical Oncology, Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Hôpital Cochin, Paris, France.,Immunomodulatory Therapies Multidisciplinary Study Group (CERTIM), AP-HP, APHP.Centre, Hôpital Cochin, Paris, France
| | - Francois Goldwasser
- Department of Medical Oncology, Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Hôpital Cochin, Paris, France.,Immunomodulatory Therapies Multidisciplinary Study Group (CERTIM), AP-HP, APHP.Centre, Hôpital Cochin, Paris, France
| | - Laure Hirsch
- Department of Medical Oncology, Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Hôpital Cochin, Paris, France.,Immunomodulatory Therapies Multidisciplinary Study Group (CERTIM), AP-HP, APHP.Centre, Hôpital Cochin, Paris, France
| | - Olivier Huillard
- Department of Medical Oncology, Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Hôpital Cochin, Paris, France.,Immunomodulatory Therapies Multidisciplinary Study Group (CERTIM), AP-HP, APHP.Centre, Hôpital Cochin, Paris, France
| |
Collapse
|
39
|
Marletta S, Fusco N, Munari E, Luchini C, Cimadamore A, Brunelli M, Querzoli G, Martini M, Vigliar E, Colombari R, Girolami I, Pagni F, Eccher A. Atlas of PD-L1 for Pathologists: Indications, Scores, Diagnostic Platforms and Reporting Systems. J Pers Med 2022; 12:1073. [PMID: 35887569 PMCID: PMC9321150 DOI: 10.3390/jpm12071073] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Innovative drugs targeting the PD1/PD-L1 axis have opened promising scenarios in modern cancer therapy. Plenty of assays and scoring systems have been developed for the evaluation of PD-L1 immunohistochemical expression, so far considered the most reliable therapeutic predictive marker. METHODS By gathering the opinion of acknowledged experts in dedicated fields of pathology, we sought to update the currently available evidence on PD-L1 assessment in various types of tumors. RESULTS Robust data were progressively collected for several anatomic districts and leading international agencies to approve specific protocols: among these, TPS with 22C3, SP142 and SP263 clones in lung cancer; IC with SP142 antibody in breast, lung and urothelial tumors; and CPS with 22C3/SP263 assays in head and neck and urothelial carcinomas. On the other hand, for other malignancies, such as gastroenteric neoplasms, immunotherapy has been only recently introduced, often for particular histotypes, so specific guidelines are still lacking. CONCLUSIONS PD-L1 immunohistochemical scoring is currently the basis for allowing many cancer patients to receive properly targeted therapies. While protocols supported by proven data are already available for many tumors, dedicated studies and clinical trials focusing on harmonization of the topic in other still only partially explored fields are surely yet advisable.
Collapse
Affiliation(s)
- Stefano Marletta
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, 37100 Verona, Italy; (S.M.); (C.L.); (M.B.)
- Department of Pathology, Pederzoli Hospital, 37019 Peschiera del Garda, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Department of Oncology and Hemato-Oncology, University of Milan, 20139 Milan, Italy;
| | - Enrico Munari
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Claudio Luchini
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, 37100 Verona, Italy; (S.M.); (C.L.); (M.B.)
| | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Marche Polytechnic University, 60131 Ancona, Italy;
| | - Matteo Brunelli
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, 37100 Verona, Italy; (S.M.); (C.L.); (M.B.)
| | - Giulia Querzoli
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, 37126 Verona, Italy;
| | - Maurizio Martini
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98124 Messina, Italy;
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, 80100 Naples, Italy;
| | - Romano Colombari
- Unit of Surgical Pathology, Ospedale Fracastoro, 37047 San Bonifacio, Italy;
| | - Ilaria Girolami
- Division of Pathology, Bolzano Central Hospital, 39100 Bolzano, Italy;
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, San Gerardo Hospital, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Albino Eccher
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, 37126 Verona, Italy;
| |
Collapse
|
40
|
Mantione ME, Sana I, Vilia MG, Riba M, Doglioni C, Larcher A, Capitanio U, Muzio M. SIGIRR Downregulation and Interleukin-1 Signaling Intrinsic to Renal Cell Carcinoma. Front Oncol 2022; 12:894413. [PMID: 35814450 PMCID: PMC9256934 DOI: 10.3389/fonc.2022.894413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
Renal cell carcinoma is highly inflamed, and tumor cells are embedded into a microenvironment enriched with IL1. While inflammatory pathways are well characterized in the immune system, less is known about these same pathways in epithelial cells; it is unclear if and how innate immune signals directly impact on cancer cells, and if we could we manipulate these for therapeutic purposes. To address these questions, we first focused on the inflammatory receptors belonging to the IL1- and Toll-like receptor family including negative regulators in a small cohort of 12 clear cell RCC (ccRCC) patients’ samples as compared to their coupled adjacent normal tissues. Our data demonstrated that renal epithelial cancer cells showed a specific and distinctive pattern of inflammatory receptor expression marked by a consistent downregulation of the inhibitory receptor SIGIRR mRNA. This repression was confirmed at the protein level in both cancer cell lines and primary tissues. When we analyzed in silico data of different kidney cancer histotypes, we identified the clear cell subtype as the one where SIGIRR was mostly downregulated; nonetheless, papillary and chromophobe tumor types also showed low levels as compared to their normal counterpart. RNA-sequencing analysis demonstrated that IL1 stimulation of the ccRCC cell line A498 triggered an intrinsic signature of inflammatory pathway activation characterized by the induction of distinct “pro-tumor” genes including several chemokines, the autocrine growth factor IL6, the atypical co-transcription factor NFKBIZ, and the checkpoint inhibitor PD-L1. When we looked for the macroareas most represented among the differentially expressed genes, additional clusters emerged including pathways involved in cell differentiation, angiogenesis, and wound healing. To note, SIGIRR overexpression in A498 cells dampened IL1 signaling as assessed by a reduced induction of NFKBIZ. Our results suggest that SIGIRR downregulation unleashes IL1 signaling intrinsic to tumor cells and that manipulating this pathway may be beneficial in ccRCC.
Collapse
Affiliation(s)
- Maria Elena Mantione
- Cell Signaling Unit, Division of Experimental Oncology, San Raffaele Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Ilenia Sana
- Cell Signaling Unit, Division of Experimental Oncology, San Raffaele Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Maria Giovanna Vilia
- Cell Signaling Unit, Division of Experimental Oncology, San Raffaele Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Michela Riba
- Center for Omics Sciences, San Raffaele Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Claudio Doglioni
- Pathology Unit, San Raffaele Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Alessandro Larcher
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy; Division of Experimental Oncology/Unit of Urology, Urological Research Institute (URI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Hospital, Milan, Italy
| | - Umberto Capitanio
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy; Division of Experimental Oncology/Unit of Urology, Urological Research Institute (URI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Hospital, Milan, Italy
| | - Marta Muzio
- Cell Signaling Unit, Division of Experimental Oncology, San Raffaele Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
- *Correspondence: Marta Muzio,
| |
Collapse
|
41
|
Fukushima H, Turkbey B, Pinto PA, Furusawa A, Choyke PL, Kobayashi H. Near-Infrared Photoimmunotherapy (NIR-PIT) in Urologic Cancers. Cancers (Basel) 2022; 14:2996. [PMID: 35740662 PMCID: PMC9221010 DOI: 10.3390/cancers14122996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a novel molecularly-targeted therapy that selectively kills cancer cells by systemically injecting an antibody-photoabsorber conjugate (APC) that binds to cancer cells, followed by the application of NIR light that drives photochemical transformations of the APC. APCs are synthesized by selecting a monoclonal antibody that binds to a receptor on a cancer cell and conjugating it to IRDye700DX silica-phthalocyanine dye. Approximately 24 h after APC administration, NIR light is delivered to the tumor, resulting in nearly-immediate necrotic cell death of cancer cells while causing no harm to normal tissues. In addition, NIR-PIT induces a strong immunologic effect, activating anti-cancer immunity that can be further boosted when combined with either immune checkpoint inhibitors or immune suppressive cell-targeted (e.g., regulatory T cells) NIR-PIT. Currently, a global phase III study of NIR-PIT in recurrent head and neck squamous cell carcinoma is ongoing. The first APC and NIR laser systems were approved for clinical use in September 2020 in Japan. In the near future, the clinical applications of NIR-PIT will expand to other cancers, including urologic cancers. In this review, we provide an overview of NIR-PIT and its possible applications in urologic cancers.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Baris Turkbey
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Peter A. Pinto
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA;
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| |
Collapse
|
42
|
Unveiling the Molecular Mechanisms Driving the Capsaicin-Induced Immunomodulatory Effects on PD-L1 Expression in Bladder and Renal Cancer Cell Lines. Cancers (Basel) 2022; 14:cancers14112644. [PMID: 35681623 PMCID: PMC9179445 DOI: 10.3390/cancers14112644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Over time, capsaicin (CPS) has been considered both a potential anti-cancer and pro-cancer molecule. Hence, the diversity of CPS functioning has already been established. Now, exploration of its application with immunotherapies might open up a new avenue in cancer therapy. Herein, the application of CPS as an immunoadjuvant to overcome the tumor’s immune-escaping mechanisms or to increase immune checkpoint therapy has been approached. In bladder cancer, the interaction of CPS with its receptor TRPV1 increases PD-L1 expression, promoting a tumorigenic effect and also providing a target for anti-PD-1/PD-L1 immunotherapy. On the contrary, in renal cell carcinoma, CPS downregulates PD-L1 expression in a TRPV1-independent manner, suggesting a potential application of CPS as an immune-adjuvant in this type of cancer. Abstract The blockade of the PD-L1/PD-1 immune checkpoint has promising efficacy in cancer treatment. However, few patients with bladder cancer (BC) or renal cell carcinoma (RCC) respond to this approach. Thus, it is important to implement a strategy to stimulate the immune anti-tumor response. In this scenario, our study evaluated the effects of a low capsaicin (CPS) dose in BC and RCC cell lines. Western blot, qRT-PCR and confocal microscopy were used to assess PD-L1 mRNA and protein expression. Alterations to the cellular oxidative status and changes to the antioxidant NME4 levels, mRNA modulation of cytokines, growth factors, transcriptional factors and oncogene, and the activation of Stat1/Stat3 pathways were examined using Western blot, cytofluorimetry and qRT-PCR profiling assays. In BC, CPS triggers an altered stress oxidative-mediated DNA double-strand break response and increases the PD-L1 expression. On the contrary, in RCC, CPS, by stimulating an efficient DNA damage repair response, thus triggering protein carbonylation, reduces the PD-L1 expression. Overall, our results show that CPS mediates a multi-faceted approach. In modulating PD-L1 expression, there is a rationale for CPS exploitation as a stimulus that increases BC cells’ response to immunotherapy or as an immune adjuvant to improve the efficacy of the conventional therapy in RCC patients.
Collapse
|
43
|
Serzan M, Atkins MB. Adjuvant therapy for patients with renal cell carcinoma following surgery: a focus on pembrolizumab. Expert Rev Anticancer Ther 2022; 22:565-574. [PMID: 35483033 DOI: 10.1080/14737140.2022.2072300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Many patients with renal cell carcinoma (RCC) who undergo surgery with curative intent have a high risk of disease recurrence and until recently no palatable adjuvant systemic therapy options. Blocking the programmed death ligand (PD-1) immune checkpoint pathway with pembrolizumab has robust clinical efficacy in patients with metastatic RCC. Results from the KEYNOTE 564 trial demonstrate that adjuvant pembrolizumab significantly improves disease- free survival after nephrectomy or metastatectomy. AREAS COVERED We provide an overview of efforts to develop an adjuvant therapy in patients with high-risk RCC. This includes a critical review of efficacy, toxicity, and clinical implications from a large phase III trial leading to the FDA and EMA approvals of adjuvant pembrolizumab. EXPERT OPINION Pembrolizumab offers an effective and well-tolerated adjuvant therapy for patients with surgically resected RCC at high-risk of disease recurrence. Future research will focus on optimal patient selection and biomarkers that predict benefit and/or toxicity from therapy.
Collapse
Affiliation(s)
- Michael Serzan
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Washington DC.,Department of Medicine, Medstar Georgetown University Hospital, Washington DC
| | - Michael B Atkins
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Washington DC.,Department of Medicine, Medstar Georgetown University Hospital, Washington DC
| |
Collapse
|
44
|
Abdel-Salam LO, El Hanbuli H, Abdelhafez DN. Tumoral and Stromal Pdl1 and Pdl2 Checkpoints Immunohistochemical Expression in Pancreatic Ductal Adenocarcinoma, a Promising Field Of Study. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is world-widely considered as one of the most malignant tumors. Programmed cell death protein 1 (PD-1), via its ligands PDL1 and PDL2 plays a critical role in cancer immunoediting. The ligands are expressed in many solid tumors and there is an emerging hope of using anti-PDL in cancer immunotherapy.
Material and methods:
This study included 40 patients with PDAC who underwent pancreaticoduodenectomy. PDL1 and PDL2 pancreatic expression were evaluated in these patients using immunohistochemical staining and correlated their expression levels with each patient’s reported clinicopathological features.
Results:
There were significant relations between high tumoral PDL1 expression and the PDAC tumor histologic grade (p= 0.021) and the tumor status (T) (p= 0.022), while the stromal expression of PDL1 showed non-significant relation with any of the studied features. There were significant relations between high tumoral PDL2 expression and tumor stage (p=0.012), while the stromal expression of PDL2 showed significant relation with tumor status, lymph node status, tumor stage and the presence lympho-vascular invasion with P value equal 0.001, 0.009, 0.009, 0.045 respectively.
Conclusion:
This study showed that in PDAC patients high tumoral PDL1 and PDL2 expression was associated with some important prognostic factors, while only stromal PDL2 expression was significantly associated with most of the studied prognostic features emphasizing a role of both markers in the prognosis of this neoplasm.
Collapse
|
45
|
Iacovelli R, Ciccarese C, Procopio G, Astore S, Antonella Cannella M, Grazia Maratta M, Rizzo M, Verzoni E, Porta C, Tortora G. Current evidence for second-line treatment in metastatic renal cell carcinoma after progression to immune-based combinations. Cancer Treat Rev 2022; 105:102379. [DOI: 10.1016/j.ctrv.2022.102379] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022]
|
46
|
Adashek JJ, Breunig JJ, Posadas E, Bhowmick NA, Ellis L, Freedland SJ, Kim H, Figlin R, Gong J. First-line Immune Checkpoint Inhibitor Combinations in Metastatic Renal Cell Carcinoma: Where Are We Going, Where Have We Been? Drugs 2022; 82:439-453. [PMID: 35175588 DOI: 10.1007/s40265-022-01683-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2022] [Indexed: 01/03/2023]
Abstract
The combination of targeted therapy and immunotherapy in the treatment of metastatic renal cell carcinoma (mRCC) has significantly improved outcomes for many patients. There are multiple FDA-approved regimens for the frontline setting based on numerous randomized Phase III trials. Despite these efforts, there remains a conundrum of identifying a biomarker-driven approach for these patients and it is unclear how to predict which patients are most likely to respond to these agents. This is due, in part, to an incomplete understanding of how these drug combinations work. The use of tyrosine kinase inhibitors that have multiple 'off-target' effects may lend themselves to the benefits observed when given in combination with immunotherapy. Further, targeting multiple clones within a patient's heterogenic tumor that are responsive to targeted therapy and others that are responsive to immunotherapy may also explain some level of improved response rates to the combination approaches compared to monotherapies. This review highlights the 5 FDA-approved regimens for mRCC in the frontline setting and offers insights into potential mechanisms for improved outcomes seen in these combination approaches.
Collapse
Affiliation(s)
- Jacob J Adashek
- Department of Internal Medicine, University of South Florida, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Joshua J Breunig
- Division of Hematology and Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA, 90048, USA
| | - Edwin Posadas
- Division of Hematology and Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA, 90048, USA
| | - Neil A Bhowmick
- Division of Hematology and Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA, 90048, USA
| | - Leigh Ellis
- Division of Hematology and Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA, 90048, USA
| | - Stephen J Freedland
- Division of Hematology and Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA, 90048, USA.,Division of Urology, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Section of Urology, Durham VA Medical Center, Durham, NC, USA
| | - Hyung Kim
- Division of Hematology and Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA, 90048, USA.,Division of Urology, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robert Figlin
- Division of Hematology and Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA, 90048, USA
| | - Jun Gong
- Division of Hematology and Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA, 90048, USA.
| |
Collapse
|
47
|
Jonasch E, Atkins MB, Chowdhury S, Mainwaring P. Combination of Anti-Angiogenics and Checkpoint Inhibitors for Renal Cell Carcinoma: Is the Whole Greater Than the Sum of Its Parts? Cancers (Basel) 2022; 14:cancers14030644. [PMID: 35158916 PMCID: PMC8833428 DOI: 10.3390/cancers14030644] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Checkpoint inhibitors and anti-angiogenic therapies are treatments that slow the progression of renal cell carcinoma, the most common type of kidney cancer. Checkpoint inhibitors and anti-angiogenic therapies work in different ways. Checkpoint inhibitors help to prevent tumors from hiding from the body’s immune system, while anti-angiogenic therapies slow the development of blood vessels that tumours need to help them to grow. Studies have shown that treatment with combination checkpoint inhibitor plus anti-angiogenic therapy can achieve better outcomes for patients with renal cell carcinoma than treatment with anti-angiogenic therapy alone. In this review, we consider how combination checkpoint inhibitor plus anti-angiogenic therapy works, and we review the current literature to identify evidence to inform clinicians as to the most effective way to use these different types of drugs, either one after the other, or together, for maximum patient benefit. Abstract Anti-angiogenic agents, such as vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitors and anti-VEGF antibodies, and immune checkpoint inhibitors (CPIs) are standard treatments for advanced renal cell carcinoma (aRCC). In the past, these agents were administered as sequential monotherapies. Recently, combinations of anti-angiogenic agents and CPIs have been approved for the treatment of aRCC, based on evidence that they provide superior efficacy when compared with sunitinib monotherapy. Here we explore the possible mechanisms of action of these combinations, including a review of relevant preclinical data and clinical evidence in patients with aRCC. We also ask whether the benefit is additive or synergistic, and, thus, whether concomitant administration is preferred over sequential monotherapy. Further research is needed to understand how combinations of anti-angiogenic agents with CPIs compare with CPI monotherapy or combination therapy (e.g., nivolumab and ipilimumab), and whether the long-term benefit observed in a subset of patients treated with CPI combinations will also be realised in patients treated with an anti-angiogenic therapy and a CPI. Additional research is also needed to establish whether other elements of the tumour microenvironment also need to be targeted to optimise treatment efficacy, and to identify biomarkers of response to inform personalised treatment using combination therapies.
Collapse
Affiliation(s)
- Eric Jonasch
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1374, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-792-2830
| | - Michael B. Atkins
- Department of Oncology, School of Medicine, Georgetown University, Washington, DC 20007, USA;
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
| | - Simon Chowdhury
- Department of Medical Oncology, Guy’s and St Thomas’ Hospitals, London SE1 9RT, UK;
- Sarah Cannon Research Institute, London W1G 6AD, UK
| | - Paul Mainwaring
- Centre for Personalised Nanomedicine, The University of Queensland, Brisbane, QLD 4072, Australia;
| |
Collapse
|
48
|
Medina López RA, Rivero Belenchon I, Mazuecos-Quirós J, Congregado-Ruíz CB, Couñago F. Update on the treatment of metastatic renal cell carcinoma. World J Clin Oncol 2022; 13:1-8. [PMID: 35116228 PMCID: PMC8790301 DOI: 10.5306/wjco.v13.i1.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 10/05/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
Metastatic renal cell cancer (mRCC) management has undergone a paradigm shift in recent decades. The first revolution came with the emergence of vascular endothelial growth factor inhibitors; there was a second wave with the unprecedented success of checkpoint inhibitors, and then the latest approach, which is becoming the new care standard in mRCC, of combining these two strategies in different ways. Updated results of Checkmate-214 after 42 mo of follow-up were consistent with previously published results showing the superiority of nivolumab/ipilimumab over sunitinib in progression free survival (PFS), overall survival (OS), and objective response rate (ORR) in intermediate and high-risk patients. However, several studies presented at the American Society of Clinical Oncology 2020 suggested that the best place, and so far, the only one for nivolumab/ipilimumab is the frontline setting. The update on Keynote-426 after 23 mo of follow-up showed no superiority of pembroli-zumab/axitinib over sunitinib in favorable-risk mRCC, suggesting that it should no longer be the first line of choice in low-risk patients. Finally, the phase III Checkmate 9ER trial results revealed the superiority of nivolumab/cabozantinib vs sunitinib in PFS, OS, and ORR, providing a new first-line option among all International Metastatic RCC Database Consortium risk patients. Some phase II clinical trials also presented this year showed promising results with new combination therapies such as nivolumab/sitravatinib, cabozantinib/atezolizumab, and lenvatinib/pembrolizumab, providing promising grounds upon which to start phase III studies. In addition, other works are using novel therapeutic agents with different mechanisms of action, including telaglenastat (a glutaminase inhibitor), entinostat [an inhibitor of histone deacetylases (HDACs)], and olaparib and talazoparib, poly(ADP-ribose) polymerase inhibitors widely used in other tumors. However, some questions regarding mRCC management still need to be addressed, such as head-to-head comparisons between the current options, treatment sequencing, non-clear cell mRCC, and the role of biomarkers to ascertain the best treatment choice.
Collapse
Affiliation(s)
- Rafael Antonio Medina López
- Department of Urology and Nephrology, Virgen del Rocío University Hospital, Biomedical Institute of Seville/CSIC/University of Seville, Sevilla 41013, Spain
| | - Ines Rivero Belenchon
- Department of Urology and Nephrology, Virgen del Rocío University Hospital, Seville 41005, Spain
| | - Javier Mazuecos-Quirós
- Department of Urology and Nephrology, Virgen del Rocío University Hospital, Biomedical Institute of Seville/CSIC/University of Seville, Sevilla 41013, Spain
| | - Carmen Belén Congregado-Ruíz
- Department of Urology and Nephrology, Virgen del Rocío University Hospital, Biomedical Institute of Seville/CSIC/University of Seville, Sevilla 41013, Spain
| | - Felipe Couñago
- Radiation Oncology, Hospital Universitario Quirónsalud, Hospital La Luz, Universidad Europea de Madrid, Madrid 28223, Spain
| |
Collapse
|
49
|
Rosellini M, Marchetti A, Tassinari E, Nuvola G, Rizzo A, Santoni M, Mollica V, Massari F. Guiding treatment selection with immunotherapy compared to targeted therapy agents in patients with metastatic kidney cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2022. [DOI: 10.1080/23808993.2022.2156786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Matteo Rosellini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Marchetti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisa Tassinari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giacomo Nuvola
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello,”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II,”, Bari, Italy
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, Via Santa Lucia 2, Macerata, Italy
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, S.Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, S.Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
50
|
Monsrud AL, Avadhani V, Mosunjac MB, Flowers L, Krishnamurti U. Programmed Death Ligand-1 Expression Is Associated With Poorer Survival in Anal Squamous Cell Carcinoma. Arch Pathol Lab Med 2021; 146:1094-1101. [DOI: 10.5858/arpa.2021-0169-oa] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 11/06/2022]
Abstract
Context.—
Upregulation of programmed death ligand-1 (PD-L1), an immunoregulatory protein, is associated with an adverse outcome in several malignancies. Very few studies have evaluated PD-L1 expression in invasive anal squamous cell carcinoma (ASCC).
Objective.—
To assess PD-L1 expression in patients with ASCC and correlate it with clinicopathologic factors and clinical outcomes.
Design.—
Fifty-one cases of ASCC were immunostained for PD-L1. PD-L1 expression by combined positive score and tumor proportion score was correlated with age, gender, HIV status, HIV viral load, CD4 count, stage, and outcomes. Kaplan-Meier curves for overall survival were plotted and compared using the log-rank test. Cox regression analysis was performed to identify significant prognostic factors (2-tailed P < .05 was considered statistically significant).
Results.—
PD-L1 was positive in 24 of 51 cases (47%) by combined positive score and in 18 of 51 (35%) by tumor proportion score. The median cancer-specific survival and 5-year overall survival were significantly lower in PD-L1+ patients. Age, gender, HIV status, HIV viral load, stage, and cancer progression were not significantly different between the two groups. CD4 count of more than 200/μL was significantly higher in PD-L1+ patients. PD-L1+ status remained statistically significant for worse overall survival on multivariate analysis.
Conclusions.—
PD-L1+ status is an independent adverse prognostic factor for overall survival in ASCC. This study highlights the potential of PD-L1 targeted therapy in better management of ASCC.
Collapse
Affiliation(s)
- Ashley L. Monsrud
- From the Department of Pathology & Laboratory Medicine (Monsrud, Avadhani, Mosunjac, Krishnamurti), Emory University, Atlanta, Georgia
| | - Vaidehi Avadhani
- From the Department of Pathology & Laboratory Medicine (Monsrud, Avadhani, Mosunjac, Krishnamurti), Emory University, Atlanta, Georgia
| | - Marina B. Mosunjac
- From the Department of Pathology & Laboratory Medicine (Monsrud, Avadhani, Mosunjac, Krishnamurti), Emory University, Atlanta, Georgia
| | - Lisa Flowers
- Department of Gynecology & Obstetrics (Flowers), Emory University, Atlanta, Georgia
| | - Uma Krishnamurti
- From the Department of Pathology & Laboratory Medicine (Monsrud, Avadhani, Mosunjac, Krishnamurti), Emory University, Atlanta, Georgia
- Krishnamurti is now with the Department of Pathology at Yale School of Medicine
| |
Collapse
|