1
|
Suzuki K, Gunji T, Kawashima M, Uryu H, Nagao R, Momoki M, Yokoyama H, Ishii H, Tanoue S, Saito T, Nishiwaki K, Yano S. Contribution of post-transplantation therapy to sustained MRD negativity in multiple myeloma: a retrospective analysis. Int J Hematol 2024; 119:39-49. [PMID: 38103160 DOI: 10.1007/s12185-023-03682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Post-transplantation therapy is commonly performed in patients with myeloma and can prolong progression-free survival (PFS). However, whether post-transplantation therapy contributes to achieving and continuing MRD-negativity remains controversial. This retrospective analysis aimed to evaluate the clinical impact of post-transplantation therapy, including tandem autologous stem cell transplantation (ASCT), in myeloma patients. The subjects were 79 patients (median age: 62 years) who received induction therapy, including bortezomib and/or lenalidomide, of whom 58 underwent post-transplantation therapy. At the median follow-up time of 50 months, the 4-year PFS rate was significantly higher in patients who underwent post-transplantation therapy than those who did not (60.6% vs. 28.6%, P = 0.012). Multivariate analysis revealed post-transplantation therapy to be a significant prognostic factor for long PFS. Tandem ASCT followed by consolidation and/or maintenance therapies improved PFS and OS. The minimal residual disease (MRD)-negative rate was significantly higher in patients who underwent post-transplantation therapy than those who did not (50.9% vs. 16.7%, P = 0.006). Post-transplantation therapy contributed to sustained MRD-negativity, which predicted long PFS and overall survival. Patients frequently discontinued post-transplantation therapy due to adverse events within 4 months. In conclusion, post-transplantation therapy improved PFS and contributed to sustained MRD-negativity in myeloma patients.
Collapse
Affiliation(s)
- Kazuhito Suzuki
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-0003, Japan.
| | - Tadahiro Gunji
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-0003, Japan
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University Daisan Hospital, Komoe, Japan
| | - Masaharu Kawashima
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-0003, Japan
| | - Hideki Uryu
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-0003, Japan
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University Daisan Hospital, Komoe, Japan
| | - Riku Nagao
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-0003, Japan
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Mamiko Momoki
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-0003, Japan
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Hiroki Yokoyama
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-0003, Japan
| | - Hiroto Ishii
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-0003, Japan
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Susumu Tanoue
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-0003, Japan
| | - Takeshi Saito
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-0003, Japan
| | - Kaichi Nishiwaki
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-0003, Japan
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Shingo Yano
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-0003, Japan
| |
Collapse
|
2
|
Gupta N, Reckamp KL, Camidge DR, Kleijn HJ, Ouerdani A, Bellanti F, Maringwa J, Hanley MJ, Wang S, Zhang P, Venkatakrishnan K. Population Pharmacokinetic and Exposure-Response Analyses From ALTA-1L: Model-Based Analyses Supporting the Brigatinib Dose in ALK-Positive NSCLC. Clin Transl Sci 2022; 15:1143-1154. [PMID: 35041775 PMCID: PMC9099121 DOI: 10.1111/cts.13231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/02/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022] Open
Abstract
The ALK in Lung Cancer Trial of brigAtinib in 1st Line (ALTA-1L) compared brigatinib versus crizotinib in ALK inhibitor-naive patients with ALK+ NSCLC. A population pharmacokinetic (PK) model was used to estimate brigatinib exposures for exposure-efficacy and exposure-safety analyses in ALTA-1L. A previously developed population PK model for brigatinib was applied to estimate brigatinib PK parameters. Relationships between static (time-independent) and dynamic (time-varying) exposure metrics and efficacy (progression-free survival [PFS], objective response rate [ORR], and intracranial ORR) and safety outcomes (selected grade ≥ 2 and grade ≥ 3 adverse events) were evaluated using logistic regression and time-to-event analyses. There were no meaningful differences in brigatinib PK in the first-line and second-line settings, supporting use of the previous population PK model for the first-line population. Exposure-response analyses showed no significant effect of time-varying brigatinib exposure on PFS. Brigatinib exposure was not significantly related to ORR, but higher exposure was associated with higher intracranial ORR (odds ratio: 1.13; 95% confidence interval: 1.01-1.28; P = 0.049). Across the observed median exposure (5th-95th percentile) at steady state for 180 mg once daily, the predicted probability of intracranial ORR was 0.83 (0.58-0.99). Adverse events significantly associated with higher exposure were elevated lipase (grade ≥ 3) and amylase (grade ≥ 2). Time to first brigatinib dose reduction was not related to exposure. These results support the benefit-risk profile of first-line brigatinib 180 mg once daily (7-day lead-in dose at 90 mg once daily) in patients with ALK+ NSCLC.
Collapse
Affiliation(s)
- Neeraj Gupta
- Takeda Development Center Americas, Inc., Lexington, MA, USA
| | - Karen L Reckamp
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | | | | | | | | | - Shining Wang
- Takeda Development Center Americas, Inc., Lexington, MA, USA
| | - Pingkuan Zhang
- Takeda Development Center Americas, Inc., Lexington, MA, USA
| | | |
Collapse
|
3
|
Chu X, Bu Y, Yang X. Recent Research Progress of Chiral Small Molecular Antitumor-Targeted Drugs Approved by the FDA From 2011 to 2019. Front Oncol 2021; 11:785855. [PMID: 34976824 PMCID: PMC8718447 DOI: 10.3389/fonc.2021.785855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Chiral drugs usually contain chiral centers, which are present as single enantiomers or racemates. Compared with achiral drugs, they have significant advantages in safety and efficacy with high stereoselectivity. Of these drugs, chirality not only exerts influence on the solubility and pharmacokinetic characteristics but also has specific mechanistic characteristics on their targets. We noted that small molecules with unique chiral properties have emerged as novel components of antitumor drugs approved by the FDA in decade. Since approved, these drugs have been continuously explored for new indications, new mechanisms, and novel combinations. In this mini review, recent research progress of twenty-two FDA-approved chiral small molecular-targeted antitumor drugs from 2011 to 2019 is summarized with highlighting the potential and advantages of their applications. We believe that these updated achievements may provide theoretical foundation and stimulate research interests for optimizing drug efficacy, expanding clinical application, overcoming drug resistance, and advancing safety in future clinical administrations of these chiral targeted drugs.
Collapse
Affiliation(s)
| | | | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
4
|
LaPlante G, Zhang W. Targeting the Ubiquitin-Proteasome System for Cancer Therapeutics by Small-Molecule Inhibitors. Cancers (Basel) 2021; 13:3079. [PMID: 34203106 PMCID: PMC8235664 DOI: 10.3390/cancers13123079] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is a critical regulator of cellular protein levels and activity. It is, therefore, not surprising that its dysregulation is implicated in numerous human diseases, including many types of cancer. Moreover, since cancer cells exhibit increased rates of protein turnover, their heightened dependence on the UPS makes it an attractive target for inhibition via targeted therapeutics. Indeed, the clinical application of proteasome inhibitors in treatment of multiple myeloma has been very successful, stimulating the development of small-molecule inhibitors targeting other UPS components. On the other hand, while the discovery of potent and selective chemical compounds can be both challenging and time consuming, the area of targeted protein degradation through utilization of the UPS machinery has seen promising developments in recent years. The repertoire of proteolysis-targeting chimeras (PROTACs), which employ E3 ligases for the degradation of cancer-related proteins via the proteasome, continues to grow. In this review, we will provide a thorough overview of small-molecule UPS inhibitors and highlight advancements in the development of targeted protein degradation strategies for cancer therapeutics.
Collapse
Affiliation(s)
- Gabriel LaPlante
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada;
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada;
- CIFAR Azrieli Global Scholars Program, Canadian Institute for Advanced Research, MaRS Centre West Tower, 661 University Avenue, Toronto, ON M5G1M1, Canada
| |
Collapse
|
5
|
Mueller-Schoell A, Groenland SL, Scherf-Clavel O, van Dyk M, Huisinga W, Michelet R, Jaehde U, Steeghs N, Huitema ADR, Kloft C. Therapeutic drug monitoring of oral targeted antineoplastic drugs. Eur J Clin Pharmacol 2021; 77:441-464. [PMID: 33165648 PMCID: PMC7935845 DOI: 10.1007/s00228-020-03014-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE This review provides an overview of the current challenges in oral targeted antineoplastic drug (OAD) dosing and outlines the unexploited value of therapeutic drug monitoring (TDM). Factors influencing the pharmacokinetic exposure in OAD therapy are depicted together with an overview of different TDM approaches. Finally, current evidence for TDM for all approved OADs is reviewed. METHODS A comprehensive literature search (covering literature published until April 2020), including primary and secondary scientific literature on pharmacokinetics and dose individualisation strategies for OADs, together with US FDA Clinical Pharmacology and Biopharmaceutics Reviews and the Committee for Medicinal Products for Human Use European Public Assessment Reports was conducted. RESULTS OADs are highly potent drugs, which have substantially changed treatment options for cancer patients. Nevertheless, high pharmacokinetic variability and low treatment adherence are risk factors for treatment failure. TDM is a powerful tool to individualise drug dosing, ensure drug concentrations within the therapeutic window and increase treatment success rates. After reviewing the literature for 71 approved OADs, we show that exposure-response and/or exposure-toxicity relationships have been established for the majority. Moreover, TDM has been proven to be feasible for individualised dosing of abiraterone, everolimus, imatinib, pazopanib, sunitinib and tamoxifen in prospective studies. There is a lack of experience in how to best implement TDM as part of clinical routine in OAD cancer therapy. CONCLUSION Sub-therapeutic concentrations and severe adverse events are current challenges in OAD treatment, which can both be addressed by the application of TDM-guided dosing, ensuring concentrations within the therapeutic window.
Collapse
Affiliation(s)
- Anna Mueller-Schoell
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Graduate Research Training Program, PharMetrX, Berlin/Potsdam, Germany
| | - Stefanie L Groenland
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Oliver Scherf-Clavel
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Madelé van Dyk
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | - Robin Michelet
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Ulrich Jaehde
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Neeltje Steeghs
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Charlotte Kloft
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Paradzik T, Bandini C, Mereu E, Labrador M, Taiana E, Amodio N, Neri A, Piva R. The Landscape of Signaling Pathways and Proteasome Inhibitors Combinations in Multiple Myeloma. Cancers (Basel) 2021; 13:1235. [PMID: 33799793 PMCID: PMC8000754 DOI: 10.3390/cancers13061235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma is a malignancy of terminally differentiated plasma cells, characterized by an extreme genetic heterogeneity that poses great challenges for its successful treatment. Due to antibody overproduction, MM cells depend on the precise regulation of the protein degradation systems. Despite the success of PIs in MM treatment, resistance and adverse toxic effects such as peripheral neuropathy and cardiotoxicity could arise. To this end, the use of rational combinatorial treatments might allow lowering the dose of inhibitors and therefore, minimize their side-effects. Even though the suppression of different cellular pathways in combination with proteasome inhibitors have shown remarkable anti-myeloma activities in preclinical models, many of these promising combinations often failed in clinical trials. Substantial progress has been made by the simultaneous targeting of proteasome and different aspects of MM-associated immune dysfunctions. Moreover, targeting deranged metabolic hubs could represent a new avenue to identify effective therapeutic combinations with PIs. Finally, epigenetic drugs targeting either DNA methylation, histone modifiers/readers, or chromatin remodelers are showing pleiotropic anti-myeloma effects alone and in combination with PIs. We envisage that the positive outcome of patients will probably depend on the availability of more effective drug combinations and treatment of early MM stages. Therefore, the identification of sensitive targets and aberrant signaling pathways is instrumental for the development of new personalized therapies for MM patients.
Collapse
Affiliation(s)
- Tina Paradzik
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Cecilia Bandini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Elisabetta Mereu
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Maria Labrador
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Elisa Taiana
- Department of Oncology and Hemato-oncology, University of Milano, 20122 Milano, Italy; (E.T.); (A.N.)
- Hematology Unit, Fondazione Cà Granda IRCCS, Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milano, 20122 Milano, Italy; (E.T.); (A.N.)
- Hematology Unit, Fondazione Cà Granda IRCCS, Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
- Città Della Salute e della Scienza Hospital, 10126 Torino, Italy
| |
Collapse
|
7
|
Li Z, Guo SL, Wang WL. Efficacy of ixazomib for the treatment of relapsed/refractory multiple myeloma: A protocol of systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e20211. [PMID: 32443346 PMCID: PMC7253538 DOI: 10.1097/md.0000000000020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Over the past years, ixazomib has been increasingly explored for the treatment of relapsed/refractory multiple myeloma (RRMM). However, its results are still contradictory. This study will explore the efficacy and safety of ixazomib for patients with RRMM. METHODS A systematic records search of Cochrane Library, PUBMED, EMBASE, CINAHL, ACMD, PsycINFO, WANGFANG, and China National Knowledge Infrastructure will be carried out from their origin to March 31, 2020 with no limitations of language and publication status. Trials will be selected by titles/abstracts, and full manuscripts by 2 independent authors. Data collection will be carried out from eligible trials based on the previous designed criteria. Study quality will be checked using Cochrane risk of bias, and statistical analysis will be administered by RevMan 5.3 software. RESULTS This study will summarize the current high-quality trials investigating the efficacy and safety of ixazomib for the treatment of patients with RRMM. CONCLUSION The results of this study may provide convinced evidence on the evidence-based medicine level, and guidance for clinical practice and future studies. INPLASY REGISTRATION NUMBER INPLASY202040027.
Collapse
|
8
|
Ito S. Proteasome Inhibitors for the Treatment of Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12020265. [PMID: 31979059 PMCID: PMC7072336 DOI: 10.3390/cancers12020265] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/19/2020] [Accepted: 01/19/2020] [Indexed: 01/04/2023] Open
Abstract
Use of proteasome inhibitors (PIs) has been the therapeutic backbone of myeloma treatment over the past decade. Many PIs are being developed and evaluated in the preclinical and clinical setting. The first-in-class PI, bortezomib, was approved by the US food and drug administration in 2003. Carfilzomib is a next-generation PI, which selectively and irreversibly inhibits proteasome enzymatic activities in a dose-dependent manner. Ixazomib was the first oral PI to be developed and has a robust efficacy and favorable safety profile in patients with multiple myeloma. These PIs, together with other agents, including alkylators, immunomodulatory drugs, and monoclonal antibodies, have been incorporated into several regimens. This review summarizes the biological effects and the results of clinical trials investigating PI-based combination regimens and novel investigational inhibitors and discusses the future perspective in the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Shigeki Ito
- Hematology & Oncology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba-cho 028-3695, Japan
| |
Collapse
|
9
|
Smolewski P, Rydygier D. Ixazomib: an investigational drug for the treatment of lymphoproliferative disorders. Expert Opin Investig Drugs 2019; 28:421-433. [DOI: 10.1080/13543784.2019.1596258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Piotr Smolewski
- Department of Experimental Hematology, Medical University of Lodz, Lodz,
Poland
| | - Dominika Rydygier
- Department of Experimental Hematology, Medical University of Lodz, Lodz,
Poland
| |
Collapse
|
10
|
Gupta N, Hanley MJ, Xia C, Labotka R, Harvey RD, Venkatakrishnan K. Clinical Pharmacology of Ixazomib: The First Oral Proteasome Inhibitor. Clin Pharmacokinet 2019; 58:431-449. [PMID: 30117017 PMCID: PMC6397141 DOI: 10.1007/s40262-018-0702-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ixazomib, the first oral proteasome inhibitor, is approved in combination with lenalidomide and dexamethasone for the treatment of patients with multiple myeloma (MM) who have received at least one prior therapy. Ixazomib is a selective, potent, and reversible inhibitor of the 20S proteasome, and preferentially binds to and inhibits the β5 chymotrypsin-like proteolytic site. Ixazomib absorption is rapid, with a median time to reach maximum plasma concentration of approximately 1 h post-dose. Ixazomib pharmacokinetics (PK) are adequately described by a three-compartment model (terminal half-life of 9.5 days) with first-order linear absorption (oral bioavailability of 58%). Plasma exposures of ixazomib increase in a dose-proportional manner. A high-fat meal decreases both the rate and extent of ixazomib absorption, supporting administration on an empty stomach. Population PK analyses demonstrated that no dose adjustment is required based on age, body size/weight, race, sex, mild-to-moderate renal impairment, or mild hepatic impairment. Results from dedicated studies indicate that a reduced starting dose (from 4 to 3 mg) is appropriate for patients with severe renal impairment, end-stage renal disease requiring dialysis, or moderate-to-severe hepatic impairment. Non-cytochrome P450 (CYP)-mediated metabolism appears to be the major clearance mechanism for ixazomib. Drug-drug interaction studies have shown no meaningful effects of strong inhibitors of CYP3A on ixazomib PK; however, the strong inducer rifampin caused a clinically relevant reduction in ixazomib exposure, supporting the recommendation to avoid concomitant administration of ixazomib with strong CYP3A inducers. Exposure-response analyses of data from the phase III TOURMALINE-MM1 registrational study demonstrate a favorable benefit-risk profile for the approved dose and regimen of weekly ixazomib 4 mg on days 1, 8, and 15 of each 28-day cycle.
Collapse
Affiliation(s)
- Neeraj Gupta
- Millennium Pharmaceuticals, Inc., a Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA, 02139, USA.
| | - Michael J Hanley
- Millennium Pharmaceuticals, Inc., a Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Cindy Xia
- Millennium Pharmaceuticals, Inc., a Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Richard Labotka
- Millennium Pharmaceuticals, Inc., a Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - R Donald Harvey
- Departments of Hematology and Medical Oncology and Pharmacology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Karthik Venkatakrishnan
- Millennium Pharmaceuticals, Inc., a Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA, 02139, USA
| |
Collapse
|
11
|
Gupta N, Hanley MJ, Diderichsen PM, Yang H, Ke A, Teng Z, Labotka R, Berg D, Patel C, Liu G, van de Velde H, Venkatakrishnan K. Model-Informed Drug Development for Ixazomib, an Oral Proteasome Inhibitor. Clin Pharmacol Ther 2019; 105:376-387. [PMID: 29446068 PMCID: PMC6585617 DOI: 10.1002/cpt.1047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/26/2018] [Accepted: 02/12/2018] [Indexed: 12/27/2022]
Abstract
Model-informed drug development (MIDD) was central to the development of the oral proteasome inhibitor ixazomib, facilitating internal decisions (switch from body surface area (BSA)-based to fixed dosing, inclusive phase III trials, portfolio prioritization of ixazomib-based combinations, phase III dose for maintenance treatment), regulatory review (model-informed QT analysis, benefit-risk of 4 mg dose), and product labeling (absolute bioavailability and intrinsic/extrinsic factors). This review discusses the impact of MIDD in enabling patient-centric therapeutic optimization during the development of ixazomib.
Collapse
Affiliation(s)
- Neeraj Gupta
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Michael J. Hanley
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | | | - Huyuan Yang
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Alice Ke
- Certara USA, Inc.PrincetonNew JerseyUSA
| | - Zhaoyang Teng
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Richard Labotka
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Deborah Berg
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Chirag Patel
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Guohui Liu
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Helgi van de Velde
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Karthik Venkatakrishnan
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| |
Collapse
|
12
|
Dimopoulos MA, Gay F, Schjesvold F, Beksac M, Hajek R, Weisel KC, Goldschmidt H, Maisnar V, Moreau P, Min CK, Pluta A, Chng WJ, Kaiser M, Zweegman S, Mateos MV, Spencer A, Iida S, Morgan G, Suryanarayan K, Teng Z, Skacel T, Palumbo A, Dash AB, Gupta N, Labotka R, Rajkumar SV. Oral ixazomib maintenance following autologous stem cell transplantation (TOURMALINE-MM3): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet 2019; 393:253-264. [PMID: 30545780 DOI: 10.1016/s0140-6736(18)33003-4] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Maintenance therapy following autologous stem cell transplantation (ASCT) can delay disease progression and prolong survival in patients with multiple myeloma. Ixazomib is ideally suited for maintenance therapy given its convenient once-weekly oral dosing and low toxicity profile. In this study, we aimed to determine the safety and efficacy of ixazomib as maintenance therapy following ASCT. METHODS The phase 3, double-blind, placebo-controlled TOURMALINE-MM3 study took place in 167 clinical or hospital sites in 30 countries in Europe, the Middle East, Africa, Asia, and North and South America. Eligible participants were adults with a confirmed diagnosis of symptomatic multiple myeloma according to International Myeloma Working Group criteria who had achieved at least a partial response after undergoing standard-of-care induction therapy followed by high-dose melphalan (200 mg/m2) conditioning and single ASCT within 12 months of diagnosis. Patients were randomly assigned in a 3:2 ratio to oral ixazomib or matching placebo on days 1, 8, and 15 in 28-day cycles for 2 years following induction, high-dose therapy, and transplantation. The initial 3 mg dose was increased to 4 mg from cycle 5 if tolerated during cycles 1-4. Randomisation was stratified by induction regimen, pre-induction disease stage, and response post-transplantation. The primary endpoint was progression-free survival (PFS) by intention-to-treat analysis. Safety was assessed in all patients who received at least one dose of ixazomib or placebo, according to treatment actually received. This trial is registered with ClinicalTrials.gov, number NCT02181413, and follow-up is ongoing. FINDINGS Between July 31, 2014, and March 14, 2016, 656 patients were enrolled and randomly assigned to receive ixazomib maintenance therapy (n=395) or placebo (n=261). With a median follow-up of 31 months (IQR 27·3-35·7), we observed a 28% reduction in the risk of progression or death with ixazomib versus placebo (median PFS 26·5 months [95% CI 23·7-33·8] vs 21·3 months [18·0-24·7]; hazard ratio 0·72, 95% CI 0·58-0·89; p=0·0023). No increase in second malignancies was noted with ixazomib therapy (12 [3%] patients) compared with placebo (eight [3%] patients) at the time of this analysis. 108 (27%) of 394 patients in the ixazomib group and 51 (20%) of 259 patients in the placebo group experienced serious adverse events. During the treatment period, one patient died in the ixazomib group and none died in the placebo group. INTERPRETATION Ixazomib maintenance prolongs PFS and represents an additional option for post-transplant maintenance therapy in patients with newly diagnosed multiple myeloma. FUNDING Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceutical Company.
Collapse
Affiliation(s)
- Meletios A Dimopoulos
- Hematology & Medical Oncology, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Francesca Gay
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria City of Health and Science of Turin, Turin, Italy
| | - Fredrik Schjesvold
- Oslo Myeloma Center, Oslo University Hospital, Oslo, Norway; KG Jebsen Center for B cell malignancies, University of Oslo, Oslo, Norway
| | - Meral Beksac
- Department of Hematology, Ankara University, Ankara, Turkey
| | - Roman Hajek
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | | | - Hartmut Goldschmidt
- Department of Internal Medicine V, University Medical Hospital and National Center of Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Vladimir Maisnar
- Fourth Department of Medicine-Hematology, FN and LF UK Hradec Králové, Hradec Králové, Czech Republic
| | - Philippe Moreau
- Department of Hematology, University Hospital Hôtel Dieu, University of Nantes, Nantes, France
| | - Chang Ki Min
- Department of Internal Medicine, Seoul St Mary's Hospital, Seoul, South Korea
| | - Agnieszka Pluta
- Department of Haematology, Medical University of Lodz, Multidisciplinary Provincial Centre of Traumatology and Oncology Nicolas Copernicus in Lodz, Lodz, Poland
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore and Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Martin Kaiser
- Department of Haematology, The Royal Marsden Hospital, London, UK; Division of Molecular Pathology, The Institute of Cancer Research ICR, London, UK
| | - Sonja Zweegman
- Department of Hematology, Amsterdam University Medical Center, VU University Amsterdam, Cancer Center Amsterdam, Netherlands
| | - Maria-Victoria Mateos
- Department of Hematology, University Hospital of Salamanca, CIC, IBMCC, Salamanca, Spain
| | - Andrew Spencer
- Malignant Haematology and Stem Cell Transplantation Service, Alfred Health-Monash University, Melbourne, VA, Australia
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Gareth Morgan
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | - Antonio Palumbo
- Millennium Pharmaceuticals, Cambridge, MA, USA; Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria S Giovanni Battista, Torino, Italy; Center for Hematology and Oncology, University Hospital Zürich, Zürich, Switzerland
| | | | | | | | - S Vincent Rajkumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Richardson PG, Zweegman S, O’Donnell EK, Laubach JP, Raje N, Voorhees P, Ferrari RH, Skacel T, Kumar SK, Lonial S. Ixazomib for the treatment of multiple myeloma. Expert Opin Pharmacother 2018; 19:1949-1968. [DOI: 10.1080/14656566.2018.1528229] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Paul G. Richardson
- Division of Hematologic Malignancy, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sonja Zweegman
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Jacob P. Laubach
- Division of Hematologic Malignancy, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Noopur Raje
- Department of Hematology/Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Peter Voorhees
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Renda H. Ferrari
- Global Medical Affairs, Millennium Pharmaceuticals, Inc, Cambridge, MA, USA
| | - Tomas Skacel
- Global Medical Affairs, Millennium Pharmaceuticals, Inc, Cambridge, MA, USA
| | | | - Sagar Lonial
- Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
14
|
Xie SC, Gillett DL, Spillman NJ, Tsu C, Luth MR, Ottilie S, Duffy S, Gould AE, Hales P, Seager BA, Charron CL, Bruzzese F, Yang X, Zhao X, Huang SC, Hutton CA, Burrows JN, Winzeler EA, Avery VM, Dick LR, Tilley L. Target Validation and Identification of Novel Boronate Inhibitors of the Plasmodium falciparum Proteasome. J Med Chem 2018; 61:10053-10066. [PMID: 30373366 PMCID: PMC6257627 DOI: 10.1021/acs.jmedchem.8b01161] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
The Plasmodium proteasome
represents a potential
antimalarial drug target for compounds with activity against multiple
life cycle stages. We screened a library of human proteasome inhibitors
(peptidyl boronic acids) and compared activities against purified P. falciparum and human 20S proteasomes. We chose four hits
that potently inhibit parasite growth and show a range of selectivities
for inhibition of the growth of P. falciparum compared
with human cell lines. P. falciparum was selected
for resistance in vitro to the clinically used
proteasome inhibitor, bortezomib, and whole genome sequencing was
applied to identify mutations in the proteasome β5 subunit.
Active site profiling revealed inhibitor features that enable retention
of potent activity against the bortezomib-resistant line. Substrate
profiling reveals P. falciparum 20S proteasome active
site preferences that will inform attempts to design more selective
inhibitors. This work provides a starting point for the identification
of antimalarial drug leads that selectively target the P.
falciparum proteasome.
Collapse
Affiliation(s)
- Stanley C Xie
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Melbourne , VIC 3010 , Australia
| | - David L Gillett
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Melbourne , VIC 3010 , Australia
| | - Natalie J Spillman
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Melbourne , VIC 3010 , Australia
| | - Christopher Tsu
- Oncology Clinical R&D , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Madeline R Luth
- Host-Microbe Systems and Therapeutics Division , UC San Diego School of Medicine , La Jolla , California 92093 , United States
| | - Sabine Ottilie
- Host-Microbe Systems and Therapeutics Division , UC San Diego School of Medicine , La Jolla , California 92093 , United States
| | - Sandra Duffy
- Griffith Institute for Drug Discovery , Griffith University , Brisbane , QLD 4111 , Australia
| | - Alexandra E Gould
- Oncology Clinical R&D , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Paul Hales
- Oncology Clinical R&D , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Benjamin A Seager
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Melbourne , VIC 3010 , Australia
| | - Carlie L Charron
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Melbourne , VIC 3010 , Australia
| | - Frank Bruzzese
- Oncology Clinical R&D , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Xiaofeng Yang
- Oncology Clinical R&D , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Xiansi Zhao
- Oncology Clinical R&D , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Shih-Chung Huang
- Oncology Clinical R&D , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Craig A Hutton
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Melbourne , VIC 3010 , Australia
| | | | - Elizabeth A Winzeler
- Host-Microbe Systems and Therapeutics Division , UC San Diego School of Medicine , La Jolla , California 92093 , United States
| | - Vicky M Avery
- Griffith Institute for Drug Discovery , Griffith University , Brisbane , QLD 4111 , Australia
| | - Lawrence R Dick
- Oncology Clinical R&D , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Melbourne , VIC 3010 , Australia
| |
Collapse
|
15
|
Biotransformation of [ 14C]-ixazomib in patients with advanced solid tumors: characterization of metabolite profiles in plasma, urine, and feces. Cancer Chemother Pharmacol 2018; 82:803-814. [PMID: 30128949 DOI: 10.1007/s00280-018-3671-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE This metabolite profiling and identification analysis (part of a phase I absorption, distribution, metabolism, and excretion study) aimed to define biotransformation pathways and evaluate associated inter-individual variability in four patients with advanced solid tumors who received [14C]-ixazomib. METHODS After administration of a single 4.1-mg oral dose of [14C]-ixazomib (total radioactivity [TRA] ~ 500 nCi), plasma (at selected timepoints), urine, and fecal samples were collected before dosing and continuously over 0-168-h postdose, followed by intermittent collections on days 14, 21, 28, and 35. TRA analysis and metabolite profiling were performed using accelerator mass spectrometry. Radiolabeled metabolites were identified using liquid chromatography/tandem mass spectrometry. RESULTS Metabolite profiles were similar in plasma, urine, and feces samples across the four patients analyzed. All metabolites identified were de-boronated. In AUC0-816 h time-proportional pooled plasma, ixazomib (54.2% of plasma TRA) and metabolites M1 (18.9%), M3 (10.6%), and M2 (7.91%), were the primary components identified. M1 was the major metabolite, contributing to 31.1% of the 76.2% of the total dose excreted in urine and feces over 0-35-day postdose. As none of the identified metabolites had a boronic acid moiety, they are unlikely to be pharmacologically active. CONCLUSIONS Hydrolytic metabolism in conjunction with oxidative deboronation appears to be the principal process in the in vivo biotransformation pathways of ixazomib. The inference of formation-rate-limited clearance of ixazomib metabolites and the inferred lack of pharmacologic activity of identified circulating metabolites provides justification for use of parent drug concentrations/systemic exposure in clinical pharmacology analyses.
Collapse
|
16
|
Richardson PG, Hofmeister CC, Rosenbaum CA, Htut M, Vesole DH, Berdeja JG, Liedtke M, Chari A, Smith SD, Lebovic D, Raje N, Byrne C, Liao E, Gupta N, Bacco AD, Estevam J, Berg D, Baz R. Twice-weekly ixazomib in combination with lenalidomide-dexamethasone in patients with newly diagnosed multiple myeloma. Br J Haematol 2018; 182:231-244. [PMID: 29938772 PMCID: PMC6055619 DOI: 10.1111/bjh.15394] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
Weekly ixazomib with lenalidomide-dexamethasone (Rd) is feasible and has shown activity in newly diagnosed multiple myeloma (NDMM) patients. This phase 1/2 study (NCT01383928) evaluated the recommended phase 2 dose (RP2D), pharmacokinetics, safety and efficacy of twice-weekly ixazomib plus Rd in NDMM; 64 patients were enrolled across both phases. Patients received twice-weekly oral ixazomib 3·0 or 3·7 mg plus lenalidomide 25 mg and dexamethasone 20 mg (10 mg in cycles 9-16) for up to sixteen 21-day cycles, followed by maintenance with twice-weekly ixazomib alone. No dose-limiting toxicities were reported in cycle 1; the RP2D was 3·0 mg based on overall tolerability across multiple cycles. In 62 evaluable patients, the confirmed overall response rate was 94% (68% ≥very good partial response; 24% complete response). Median progression-free survival was 24·9 months. Responses (median duration 36·9 months for patients receiving the RP2D) deepened during treatment. Grade 3 drug-related adverse events (AEs) occurred in 64% of patients, including: rash, 13%; peripheral neuropathy, 8%; hyperglycaemia, 8%. There were no grade 4 drug-related AEs. Thirteen patients discontinued due to AEs. Twice-weekly ixazomib-Rd offers substantial activity with promising long-term outcomes in NDMM patients but may be associated with greater toxicity compared with weekly ixazomib-Rd in this setting.
Collapse
Affiliation(s)
| | | | | | - Myo Htut
- Hematology and Stem Cell TransplantCity of Hope National Medical Center DuarteDuarteCAUSA
| | - David H. Vesole
- John Theurer Cancer CenterHackensack University Medical CenterHackensackNJUSA
| | | | | | - Ajai Chari
- Mount Sinai School of Medicine Ruttenberg Treatment CenterNew YorkNYUSA
| | - Stephen D. Smith
- Fred Hutchinson Cancer Research CenterUniversity of WashingtonSeattleWAUSA
| | | | | | | | - Eileen Liao
- Millennium Pharmaceuticals Inc.CambridgeMAUSA
| | | | | | | | | | - Rachid Baz
- Malignant Hematology, H. Lee Moffitt Cancer Center & Research InstituteTampaFLUSA
| |
Collapse
|
17
|
San-Miguel JF, Echeveste Gutierrez MA, Špicka I, Mateos MV, Song K, Craig MD, Bladé J, Hájek R, Chen C, Di Bacco A, Estevam J, Gupta N, Byrne C, Lu V, van de Velde H, Lonial S. A phase I/II dose-escalation study investigating all-oral ixazomib-melphalan-prednisone induction followed by single-agent ixazomib maintenance in transplant-ineligible newly diagnosed multiple myeloma. Haematologica 2018; 103:1518-1526. [PMID: 29954932 PMCID: PMC6119151 DOI: 10.3324/haematol.2017.185991] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
This phase I/II dose-escalation study investigated the all-oral ixazomib-melphalan-prednisone regimen, followed by single-agent ixazomib maintenance, in elderly, transplant-ineligible patients with newly diagnosed multiple myeloma. Primary phase I objectives were to determine the safety and recommended phase II dose of ixazomib-melphalan-prednisone. The primary phase II objective was to determine the complete plus very good partial response rate. In phase I, patients were enrolled to 4 arms investigating weekly or twice-weekly ixazomib (13 28-day cycles or nine 42-day cycles) plus melphalan-prednisone. In phase II, an expansion cohort was enrolled at the recommended phase II ixazomib dose. Of the 61 patients enrolled, 26 received the recommended phase II dose (ixazomib 4.0 mg [days 1, 8, 15] plus melphalan-prednisone 60 mg/m2 [days 1-4], 28-day cycles). Of the 61 enrolled patients, 36 (13 of 26 in the recommended phase II dose cohort) received single-agent ixazomib maintenance (days 1, 8, 15; 28-day cycles). In phase I, 10/38 patients reported dose-limiting toxicities in cycle 1, including grade 3 and/or 4 neutropenia (n=6) and thrombocytopenia (n=4). Complete plus very good partial response rate was 48% (48% at recommended phase II dose), including 28% (22%) complete response or better; responses deepened during maintenance in 34% (33%) of evaluable patients. After median follow up of 43.6 months, median progression-free survival was 22.1 months. Adverse events were mainly hematologic events, gastrointestinal events, and peripheral neuropathy. This study demonstrates the feasibility, tolerability, and activity of ixazomib-melphalan-prednisone induction and single-agent ixazomib maintenance in transplant-ineligible newly diagnosed multiple myeloma patients. clinicaltrials.gov identifier 01335685.
Collapse
Affiliation(s)
- Jesús F San-Miguel
- Clinica Universidad de Navarra, Centro Investigación Medica Aplicada (CIMA), El Instituto de Investigación Sanitaria de Navarra (IDISNA), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | | | - Ivan Špicka
- 1Medical Department - Clinical Department of Haematology, First Faculty of Medicine and General Teaching Hospital, Charles University, Prague, Czech Republic
| | - María-Victoria Mateos
- Hospital Universitario de Salamanca, Instituto Biosanitario de Salamanca (IBSAL), Spain
| | - Kevin Song
- Division of Hematology, University of British Columbia, Vancouver, BC, Canada
| | - Michael D Craig
- Department of Medicine, West Virginia University, Morgantown, WV, USA
| | - Joan Bladé
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain
| | - Roman Hájek
- Department of Haematooncology, University Hospital Ostrava, Faculty of Medicine, Ostrava University, Czech Republic
| | - Christine Chen
- Cancer Clinical Research Unit, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Alessandra Di Bacco
- Millennium Pharmaceuticals, Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Atlanta, GA, USA
| | - Jose Estevam
- Millennium Pharmaceuticals, Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Atlanta, GA, USA
| | - Neeraj Gupta
- Millennium Pharmaceuticals, Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Atlanta, GA, USA
| | - Catriona Byrne
- Millennium Pharmaceuticals, Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Atlanta, GA, USA
| | - Vickie Lu
- Millennium Pharmaceuticals, Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Atlanta, GA, USA
| | - Helgi van de Velde
- Millennium Pharmaceuticals, Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Atlanta, GA, USA
| | - Sagar Lonial
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|