1
|
Colombino M, Palmieri G, Rodio M, Tettamanzi M, Rampazzo S, Margani R, Trignano E, Cossu A, Fedeli MA, Fadda GM, Rubino C. Mutational Profiles of Cutaneous Squamous Cell Carcinomas with Different Patterns of Clinical Aggression from Head and Neck Regions. Cancers (Basel) 2024; 16:1956. [PMID: 38893077 PMCID: PMC11171166 DOI: 10.3390/cancers16111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Cutaneous squamous cell carcinoma is a prevalent malignancy with a rising incidence and a notably high mutational load. Exploring the genetic nuances of cSCC and investigating molecular approaches stands as a potential avenue for improving outcomes in high-risk patients. This retrospective case-control study involved two cohorts, one of 14 patients (the "discovery cohort") and the other of 12 patients (the "validation cohort"), with cSCC located in the head/neck anatomical region and diagnosed at the pT2 stage. Overall, cases developed early local relapses of the disease, whereas controls never relapsed during the entire follow-up period. A next-generation sequencing (NGS) approach conducted on histological samples revealed that TP53 and CDKN2A were the most frequently mutated genes in our series. No specific mutations were identified as potential prognostic or therapeutic targets. Controls exhibited a tendency toward a higher mutational rate compared to cases. It is possible that an increased number of mutations could prompt the cSCC to expose more antigens, becoming more immunogenic and facilitating recognition by the immune system. This could enhance and sustain the immunological response, potentially preventing future recurrences.
Collapse
Affiliation(s)
- Maria Colombino
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), 07100 Sassari, Italy;
| | - Giuseppe Palmieri
- Immuno-Oncology & Targeted Cancer Biotherapies, Unit of Cancer Genetics, Institute of Genetic and Biomolecular Research, National Research Council (CNR), University of Sassari, 07100 Sassari, Italy
| | - Manuela Rodio
- Plastic Surgery Unit, University Hospital Trust of Sassari, 07100 Sassari, Italy; (M.R.); (M.T.); (S.R.); (R.M.); (E.T.); (C.R.)
- Plastic, Reconstructive and Aesthetic Surgery Training Program, University of Sassari, 07100 Sassari, Italy
| | - Matilde Tettamanzi
- Plastic Surgery Unit, University Hospital Trust of Sassari, 07100 Sassari, Italy; (M.R.); (M.T.); (S.R.); (R.M.); (E.T.); (C.R.)
- Plastic, Reconstructive and Aesthetic Surgery Training Program, University of Sassari, 07100 Sassari, Italy
| | - Silvia Rampazzo
- Plastic Surgery Unit, University Hospital Trust of Sassari, 07100 Sassari, Italy; (M.R.); (M.T.); (S.R.); (R.M.); (E.T.); (C.R.)
- Plastic, Reconstructive and Aesthetic Surgery Training Program, University of Sassari, 07100 Sassari, Italy
| | - Raffaello Margani
- Plastic Surgery Unit, University Hospital Trust of Sassari, 07100 Sassari, Italy; (M.R.); (M.T.); (S.R.); (R.M.); (E.T.); (C.R.)
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Emilio Trignano
- Plastic Surgery Unit, University Hospital Trust of Sassari, 07100 Sassari, Italy; (M.R.); (M.T.); (S.R.); (R.M.); (E.T.); (C.R.)
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Antonio Cossu
- Unit of Anatomic Pathology and Histology, University Hospital of Sassari (A.O.U. SS), Via Matteotti 60, 07100 Sassari, Italy; (A.C.); (M.A.F.)
| | - Maria Antonietta Fedeli
- Unit of Anatomic Pathology and Histology, University Hospital of Sassari (A.O.U. SS), Via Matteotti 60, 07100 Sassari, Italy; (A.C.); (M.A.F.)
| | - Giovanni Maria Fadda
- Oncologia Medica, University Hospital of Sassari (A.O.U. SS), 07100 Sassari, Italy;
| | - Corrado Rubino
- Plastic Surgery Unit, University Hospital Trust of Sassari, 07100 Sassari, Italy; (M.R.); (M.T.); (S.R.); (R.M.); (E.T.); (C.R.)
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
2
|
Stravodimou A, Voutsadakis IA. Neo-adjuvant therapies for ER positive/HER2 negative breast cancers: from chemotherapy to hormonal therapy, CDK inhibitors, and beyond. Expert Rev Anticancer Ther 2024; 24:117-135. [PMID: 38475990 DOI: 10.1080/14737140.2024.2330601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION Chemotherapy has been traditionally used as neo-adjuvant therapy in breast cancer for down-staging of locally advanced disease in all sub-types. In the adjuvant setting, genomic assays have shown that a significant proportion of ER positive/HER2 negative patients do not derive benefit from the addition of chemotherapy to adjuvant endocrine therapy. An interest in hormonal treatments as neo-adjuvant therapies in ER positive/HER2 negative cancers has been borne by their documented success in the adjuvant setting. Moreover, cytotoxic chemotherapy is less effective in ER positive/HER2 negative disease compared with other breast cancer subtypes in obtaining pathologic complete responses. AREAS COVERED Neo-adjuvant therapies for ER positive/HER2 negative breast cancers and associated biomarkers are reviewed, using a Medline survey. A focus of discussion is the prediction of patients that are unlikely to derive extra benefit from chemotherapy and have the highest probabilities of benefiting from hormonal and other targeted therapies. EXPERT OPINION Predictive biomarkers of response to neo-adjuvant chemotherapy and hormonal therapies are instrumental for selecting ER positive/HER2 negative breast cancer patients for each treatment. Chemotherapy remains the standard of care for many of those patients requiring neo-adjuvant treatment, but other neo-adjuvant therapies are increasingly used.
Collapse
Affiliation(s)
- Athina Stravodimou
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste Marie, Ontario, Canada
- Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
3
|
Hermida-Prado F, Xie Y, Sherman S, Nagy Z, Russo D, Akhshi T, Chu Z, Feit A, Campisi M, Chen M, Nardone A, Guarducci C, Lim K, Font-Tello A, Lee I, García-Pedrero J, Cañadas I, Agudo J, Huang Y, Sella T, Jin Q, Tayob N, Mittendorf EA, Tolaney SM, Qiu X, Long H, Symmans WF, Lin JR, Santagata S, Bedrosian I, Yardley DA, Mayer IA, Richardson ET, Oliveira G, Wu CJ, Schuster EF, Dowsett M, Welm AL, Barbie D, Metzger O, Jeselsohn R. Endocrine Therapy Synergizes with SMAC Mimetics to Potentiate Antigen Presentation and Tumor Regression in Hormone Receptor-Positive Breast Cancer. Cancer Res 2023; 83:3284-3304. [PMID: 37450351 PMCID: PMC10543960 DOI: 10.1158/0008-5472.can-23-1711] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Immunotherapies have yet to demonstrate significant efficacy in the treatment of hormone receptor-positive (HR+) breast cancer. Given that endocrine therapy (ET) is the primary approach for treating HR+ breast cancer, we investigated the effects of ET on the tumor immune microenvironment (TME) in HR+ breast cancer. Spatial proteomics of primary HR+ breast cancer samples obtained at baseline and after ET from patients enrolled in a neoadjuvant clinical trial (NCT02764541) indicated that ET upregulated β2-microglobulin and influenced the TME in a manner that promotes enhanced immunogenicity. To gain a deeper understanding of the underlying mechanisms, the intrinsic effects of ET on cancer cells were explored, which revealed that ET plays a crucial role in facilitating the chromatin binding of RelA, a key component of the NF-κB complex. Consequently, heightened NF-κB signaling enhanced the response to interferon-gamma, leading to the upregulation of β2-microglobulin and other antigen presentation-related genes. Further, modulation of NF-κB signaling using a SMAC mimetic in conjunction with ET augmented T-cell migration and enhanced MHC-I-specific T-cell-mediated cytotoxicity. Remarkably, the combination of ET and SMAC mimetics, which also blocks prosurvival effects of NF-κB signaling through the degradation of inhibitors of apoptosis proteins, elicited tumor regression through cell autonomous mechanisms, providing additional support for their combined use in HR+ breast cancer. SIGNIFICANCE Adding SMAC mimetics to endocrine therapy enhances tumor regression in a cell autonomous manner while increasing tumor immunogenicity, indicating that this combination could be an effective treatment for HR+ patients with breast cancer.
Collapse
Affiliation(s)
- Francisco Hermida-Prado
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), IUOPA, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Yingtian Xie
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shira Sherman
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zsuzsanna Nagy
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Douglas Russo
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tara Akhshi
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zhengtao Chu
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
| | - Avery Feit
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Minyue Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Agostina Nardone
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Cristina Guarducci
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Klothilda Lim
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alba Font-Tello
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Irene Lee
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Juana García-Pedrero
- University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), IUOPA, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Israel Cañadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Judith Agudo
- Harvard Medical School, Boston, Massachusetts
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ying Huang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tal Sella
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
| | - Qingchun Jin
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nabihah Tayob
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Elizabeth A. Mittendorf
- Harvard Medical School, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Henry Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Jia-Ren Lin
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - Sandro Santagata
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Isabelle Bedrosian
- Department of Breast Surgical Oncology, Division of Surgery, MD Anderson Cancer Center, Houston, Texas
| | - Denise A. Yardley
- Department of Medical Oncology, Sarah Cannon Cancer Center, Nashville, Tennessee
- Tennessee Oncology, Nashville, Tennessee
| | - Ingrid A. Mayer
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Edward T. Richardson
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Catherine J. Wu
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Eugene F. Schuster
- The BC Now Toby Robins Research Centre at the Institute of Cancer Research, London, United Kingdom
- Ralph Lauren Centre for BC Research, Royal Marsden Hospital, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Mitch Dowsett
- The BC Now Toby Robins Research Centre at the Institute of Cancer Research, London, United Kingdom
- Ralph Lauren Centre for BC Research, Royal Marsden Hospital, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Alana L. Welm
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
| | - David Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Otto Metzger
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
| | - Rinath Jeselsohn
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
| |
Collapse
|
4
|
Mechanisms and Strategies to Overcome PD-1/PD-L1 Blockade Resistance in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 15:cancers15010104. [PMID: 36612100 PMCID: PMC9817764 DOI: 10.3390/cancers15010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by a high rate of systemic metastasis, insensitivity to conventional treatment and susceptibility to drug resistance, resulting in a poor patient prognosis. The immune checkpoint inhibitors (ICIs) represented by antibodies of programmed death receptor 1 (PD-1) and programmed death receptor ligand 1 (PD-L1) have provided new therapeutic options for TNBC. However, the efficacy of PD-1/PD-L1 blockade monotherapy is suboptimal immune response, which may be caused by reduced antigen presentation, immunosuppressive tumor microenvironment, interplay with other immune checkpoints and aberrant activation of oncological signaling in tumor cells. Therefore, to improve the sensitivity of TNBC to ICIs, suitable patients are selected based on reliable predictive markers and treated with a combination of ICIs with other therapies such as chemotherapy, radiotherapy, targeted therapy, oncologic virus and neoantigen-based therapies. This review discusses the current mechanisms underlying the resistance of TNBC to PD-1/PD-L1 inhibitors, the potential biomarkers for predicting the efficacy of anti-PD-1/PD-L1 immunotherapy and recent advances in the combination therapies to increase response rates, the depth of remission and the durability of the benefit of TNBC to ICIs.
Collapse
|
5
|
Xu Z, Liu J, Liu Z, Zhang H. MARCH1 as a novel immune-related prognostic biomarker that shapes an inflamed tumor microenvironment in lung adenocarcinoma. Front Oncol 2022; 12:1008753. [PMID: 36313698 PMCID: PMC9606618 DOI: 10.3389/fonc.2022.1008753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
E3 ubiquitin ligases (E3s), the second most common cancer-related functional protein family, play vital roles in multiple tumors. However, their importance in prognosis and immunotherapy of lung adenocarcinoma (LUAD) is not clear. First, utilizing the data from The Cancer Genome Atlas (TCGA), we comprehensively assessed the expression profile and immunological association of 13 E3s in LUAD patients. Consequently, MARCH1 was considered a candidate for further study. Second, several algorithms were applied to assess the correlation between MARCH1 and immunological characteristics in the LUAD tumor microenvironment. Third, an immune risk score (IRS) was developed to predict the prognosis. Finally, the immunological relationship of MARCH1 in pan-cancer was also estimated. We found that E3s were disordered in LUAD. Among them, MARCH1 was positively correlated with most immunological characteristics, indicating that MARCH1 designed an inflamed TME in LUAD. Coincidently, LUAD with low MARCH1 expression had a poor prognosis and was not sensitive to immune checkpoint blockers. In addition, the IRS could accurately predict the prognosis. In pan-cancer, MARCH1 was also positively correlated with most immunological characteristics. In conclusion, MARCH1 could be a novel and promising biomarker for immune status and effectiveness of immunotherapy for LUAD patients.
Collapse
Affiliation(s)
- Zhiyong Xu
- Department of Oncology, the Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiotherapy, Southern Theater General Hospital, Guangzhou, China
| | - Jun Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Zichuan Liu
- Internal Medicine Section2, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Zichuan Liu, ; Haibo Zhang,
| | - Haibo Zhang
- Department of Oncology, the Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zichuan Liu, ; Haibo Zhang,
| |
Collapse
|
6
|
High Mutation Burden in ER-Positive/HER2-Negative/Luminal Breast Cancers. J Clin Med 2022; 11:jcm11061605. [PMID: 35329928 PMCID: PMC8953761 DOI: 10.3390/jcm11061605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/30/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Tumor mutation burden (TMB) is arising as a useful marker of checkpoint inhibitors’ effectiveness in cancer patients in general and has been proposed as predictive in breast cancers. Despite the initial success of checkpoint inhibitors in triple-negative breast cancer, ER-positive breast cancers are less amenable to immunotherapy treatments due to the lower immunogenicity of this subset, associated with lower TMB and less pronounced inflammatory cell infiltration. However, a minority of ER-positive breast cancers do have a higher TMB and could be targets of immune checkpoint inhibitors. Methods: This investigation uses publicly available genomic data to examine ER-positive/HER2-negative or luminal breast cancers with high mutation numbers and compare them with cancers of the same subtype and low mutation numbers. Clinical characteristics and molecular correlates according to mutation numbers are described. Results: ER-positive/HER2-negative and luminal breast cancers with high mutation numbers have a higher prevalence of PIK3CA mutations and in some of the series examined mutations in TP53 and CDH1. A significant proportion of cancers with high mutation numbers carry mutations in microsatellite instability genes and genes involved in DNA damage response. Despite these differences, the prognosis of ER-positive/HER2-negative and luminal breast cancers with high mutation numbers is not significantly different compared to counterparts with lower mutation counts. Conclusions: These data may inform the potential suitability of these cancers for immunotherapy and could guide the development of rational combination therapies based on immune checkpoint inhibitors with other targeted drugs.
Collapse
|
7
|
Li A, Goodyear S, Fuss C, Mitri Z. Exceptional Response to Pembrolizumab and Trastuzumab in a Heavily Pretreated Patient With HER2-Positive TMB-H and MSI-H Metastatic Breast Cancer. JCO Precis Oncol 2022; 5:904-909. [PMID: 34994619 DOI: 10.1200/po.20.00361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Allen Li
- Department of Hematology Oncology, Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| | - Shaun Goodyear
- Department of Hematology Oncology, Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| | - Cristina Fuss
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR
| | - Zahi Mitri
- Department of Hematology Oncology, Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| |
Collapse
|
8
|
Zhang L, Chen Y, Lv Y, Jiao S, Zhao W. OUP accepted manuscript. Oncologist 2022; 27:245-250. [PMID: 35380719 DOI: 10.1093/oncolo/oyac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 12/28/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Li Zhang
- Department of Oncology, PLA General Hospital, Beijing, People's Republic of China
| | - Yimeng Chen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, People's Republic of China
| | - Yao Lv
- Department of Oncology, PLA General Hospital, Beijing, People's Republic of China
| | - Shunchang Jiao
- Department of Oncology, PLA General Hospital, Beijing, People's Republic of China
| | - Weihong Zhao
- Department of Oncology, PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
9
|
Rizzo A, Ricci AD. Biomarkers for breast cancer immunotherapy: PD-L1, TILs, and beyond. Expert Opin Investig Drugs 2021; 31:549-555. [PMID: 34793275 DOI: 10.1080/13543784.2022.2008354] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) have recently entered into the therapeutic scenario of metastatic breast cancer. However, only a proportion of patients benefit from ICIs and immune-based combinations, so the identification of reliable predictors of response remains an unmet need. AREAS COVERED We discuss potential predictors of response to ICIs in breast cancer, including PD-L1 expression, tumor-infiltrating lymphocytes (TILs), tumor mutational burden (TMB), and several other biomarkers and suggest future directions of research in this setting. A literature search was conducted in October 2021 of Pubmed/Medline, Cochrane library and Scopus databases; in addition, abstract of international cancer meetings were reviewed. EXPERT OPINION In terms of predictors of response to immunotherapy in TNBC patients, several biomarkers are being evaluated. Valuable data on predictive biomarkers have recently emerged, including host-related factors, immune-related cells, and protein and genetic markers. Data supporting immunotherapy in the metastatic triple-negative breast cancer setting are not concordant, but there have been some positive phase III trials including IMpassion130 and KEYNOTE-355. Phase II and III (neo)adjuvant trials are supportive of this therapeutic strategy. Further investigations are warranted in this challenging area.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italia
| | - Angela Dalia Ricci
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italia
| |
Collapse
|
10
|
Henriques B, Mendes F, Martins D. Immunotherapy in Breast Cancer: When, How, and What Challenges? Biomedicines 2021; 9:1687. [PMID: 34829916 PMCID: PMC8616011 DOI: 10.3390/biomedicines9111687] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Breast Cancer (BC) is the second most frequent cause of cancer death among women worldwide and, although there have been significant advances in BC therapies, a significant percentage of patients develop metastasis and disease recurrence. Since BC was demonstrated to be an immunogenic tumor, immunotherapy has broken through as a significant therapy strategy against BC. Over the years, immunotherapy has improved the survival rate of HER2+ BC patients due to the approval of some monoclonal antibodies (mAbs) such as Trastuzumab, Pertuzumab and, recently, Margetuximab, along with the antibody-drug conjugates (ADC) Trastuzumab-Emtansine (T-DM1) and Trastuzumab Deruxtecan. Immune checkpoint inhibitors (ICI) showed promising efficacy in triple-negative breast cancer (TNBC) treatment, namely Atezolizumab and Pembrolizumab. Despite the success of immunotherapy, some patients do not respond to immunotherapy or those who respond to the treatment relapse or progress. The main causes of these adverse events are the complex, intrinsic or extrinsic resistance mechanisms. In this review, we address the different immunotherapy approaches approved for BC and some of the mechanisms responsible for resistance to immunotherapy.
Collapse
Affiliation(s)
- Beatriz Henriques
- Politécnico de Coimbra, ESTeSC, UCPCBL, 3046-854 Coimbra, Portugal; (B.H.); (F.M.)
| | - Fernando Mendes
- Politécnico de Coimbra, ESTeSC, UCPCBL, 3046-854 Coimbra, Portugal; (B.H.); (F.M.)
- Laboratório de Investigação em Ciências Aplicadas à Saúde (LabinSaúde), Politécnico de Coimbra, ESTESC, 3046-854 Coimbra, Portugal
- Biophysics Institute of Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- European Association for Professions in Biomedical Sciences, B-1000 Brussels, Belgium
| | - Diana Martins
- Politécnico de Coimbra, ESTeSC, UCPCBL, 3046-854 Coimbra, Portugal; (B.H.); (F.M.)
- Laboratório de Investigação em Ciências Aplicadas à Saúde (LabinSaúde), Politécnico de Coimbra, ESTESC, 3046-854 Coimbra, Portugal
- Biophysics Institute of Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| |
Collapse
|
11
|
Chic N, Brasó-Maristany F, Prat A. Biomarkers of immunotherapy response in breast cancer beyond PD-L1. Breast Cancer Res Treat 2021; 191:39-49. [PMID: 34676466 DOI: 10.1007/s10549-021-06421-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors have modified the treatment algorithm in a variety of cancer types, including breast cancer. Nevertheless, optimal selection of ideal candidates to these drugs remains an unmet need. Although PD-L1 expression by immunohistochemistry seems to be the most promising biomarker to date, its predictive ability is far from ideal. Thus, the development of new predictive biomarkers is essential for a better selection of patients. Here, we discuss potential biomarkers beyond PD-L1 that could play an important role in precision cancer immunotherapy.
Collapse
Affiliation(s)
- Nuria Chic
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,Department of Medical Oncology, Hospital Clínic of Barcelona, Carrer de Villarroel, 170, 08036, Barcelona, Spain.,SOLTI Cooperative Group, Barcelona, Spain
| | - Fara Brasó-Maristany
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,Department of Medical Oncology, Hospital Clínic of Barcelona, Carrer de Villarroel, 170, 08036, Barcelona, Spain.,SOLTI Cooperative Group, Barcelona, Spain
| | - Aleix Prat
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain. .,Department of Medical Oncology, Hospital Clínic of Barcelona, Carrer de Villarroel, 170, 08036, Barcelona, Spain. .,SOLTI Cooperative Group, Barcelona, Spain. .,Department of Medicine, University of Barcelona, Barcelona, Spain. .,Institute of Oncology (IOB)-Quiron, Barcelona, Spain.
| |
Collapse
|
12
|
Kossai M, Radosevic-Robin N, Penault-Llorca F. Refining patient selection for breast cancer immunotherapy: beyond PD-L1. ESMO Open 2021; 6:100257. [PMID: 34487970 PMCID: PMC8426207 DOI: 10.1016/j.esmoop.2021.100257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Therapies that modulate immune response to cancer, such as immune checkpoint inhibitors, began an intense development a few years ago; however, in breast cancer (BC), the results have been relatively disappointing so far. Finding biomarkers for better selection of BC patients for various immunotherapies remains a significant unmet medical need. At present, only tumour tissue programmed death-ligand 1 (PD-L1) and mismatch repair deficiency status are approved as theranostic biomarkers for programmed cell death-1 (PD-1)/PD-L1 inhibitors in BC. However, due to the complexity of tumour microenvironment (TME) and cancer response to immunomodulators, none of them is a perfect selector. Therefore, an intense quest is ongoing for complementary tumour- or host-related predictive biomarkers in breast immuno-oncology. Among the upcoming biomarkers, quantity, immunophenotype and spatial distribution of tumour-infiltrating lymphocytes and other TME cells as well as immune gene signatures emerge as most promising and are being increasingly tested in clinical trials. Biomarkers or strategies allowing dynamic assessment of BC response to immunotherapy, such as circulating/exosomal PD-L1, quantity of white/immune blood cell subpopulations and molecular imaging are particularly suitable for immunotreatment monitoring. Finally, host-related factors, such as microbiome and lifestyle, should also be taken into account when planning integration of immunomodulating therapies into BC management. As none of the biomarkers taken separately is accurate enough, the solution could come from composite biomarkers, which would combine clinical, molecular and immunological features of the disease, possibly powered by artificial intelligence. At present, immune checkpoint inhibitors (ICIs) are the only approved immunotherapy drugs in BC. Tumour PD-L1 and microsatellite status are current companion biomarkers for ICIs in BC; however, these need improvement. Evaluation of tumour immune contexture and the dynamics of circulating immune cell counts are promising novel approaches. Development of noninvasive monitoring and composite biomarkers will facilitate cancer immunotherapy, including in BC.
Collapse
Affiliation(s)
- M Kossai
- Department of Pathology, University Clermont Auvergne, INSERM U1240, Centre Jean Perrin, Clermont-Ferrand, France
| | - N Radosevic-Robin
- Department of Pathology, University Clermont Auvergne, INSERM U1240, Centre Jean Perrin, Clermont-Ferrand, France.
| | - F Penault-Llorca
- Department of Pathology, University Clermont Auvergne, INSERM U1240, Centre Jean Perrin, Clermont-Ferrand, France
| |
Collapse
|
13
|
Jones TE, Zou J, Tseng GC, Roy S, Bhargava R. The Utility of Next-Generation Sequencing in Advanced Breast and Gynecologic Cancers. Am J Clin Pathol 2021; 156:455-460. [PMID: 33728425 DOI: 10.1093/ajcp/aqaa256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Next-generation sequencing (NGS) has the potential to identify genetic alterations that are actionable with targeted therapy. Our objective was to identify the impact of NGS testing on advanced breast and gynecologic malignancies. METHODS A retrospective review of 108 patients who underwent NGS testing between 2015 and 2019 was performed. The NGS clinical action rate was calculated based on documentation of positive clinical action taken in cases with an actionable NGS result. RESULTS The 108 specimens tested included 35 breast cancers and 73 gynecologic malignancies, with most of the testing performed at Foundation Medicine (90%). Actionable mutation(s) were identified in 79 (73%) of 108 cases. The overall clinical action rate of NGS testing was 38% (30 of 79 cases). Overall, 47 (44%) of 108 patients died, all succumbing to disease. The average survival was 10.9 months. The survival difference between patients with actionable NGS result and targeted treatment, actionable NGS result but no targeted treatment, and patients with nonactionable NGS result was not significant (log-rank test, P = .5160). CONCLUSIONS NGS testing for advanced breast and gynecologic cancers at our institution has a 38% clinical action rate. However, the increased clinical action rate over the years did not translate into improved survival.
Collapse
Affiliation(s)
- Terrell E Jones
- Department of Pathology, Presbyterian University Hospital, Pittsburgh, PA, USA
| | - Jian Zou
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Somak Roy
- Department of Pathology, Presbyterian University Hospital, Pittsburgh, PA, USA
| | - Rohit Bhargava
- Department of Pathology, Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Criscitiello C, Guerini-Rocco E, Viale G, Fumagalli C, Sajjadi E, Venetis K, Piciotti R, Invernizzi M, Malapelle U, Fusco N. Immunotherapy in Breast Cancer Patients: A Focus on the Use of the Currently Available Biomarkers in Oncology. Anticancer Agents Med Chem 2021; 22:787-800. [PMID: 34229592 DOI: 10.2174/1871520621666210706144112] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/23/2021] [Accepted: 02/01/2021] [Indexed: 11/22/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have remarkably modified the way solid tumors are managed, including breast cancer. Unfortunately, only a relatively small number of breast cancer patients significantly respond to these treatments. To maximize the immunotherapy benefit in breast cancer, several efforts are currently being put forward for the identification of i) the best therapeutic strategy (i.e. ICI monotherapy or in association with chemotherapy, radiotherapy, or other drugs); ii) the optimal timing for administration (e.g. early/advanced stage of disease; adjuvant/neoadjuvant setting); iii) the most effective and reliable predictive biomarkers of response (e.g. tumor-infiltrating lymphocytes, programmed death-ligand 1, microsatellite instability associated with mismatch repair deficiency, and tumor mutational burden). This article reviews the impacts and gaps in the characterization of immune-related biomarkers raised by clinical and translational research studies with immunotherapy treatments. Particular emphasis has been put on the documented evidence of significant clinical benefits of ICI in different randomized clinical trials, along with preanalytical and analytical issues in predictive biomarkers pathological assessment.
Collapse
Affiliation(s)
| | | | - Giulia Viale
- Department of Medical Oncology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Caterina Fumagalli
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Elham Sajjadi
- Department of Oncology and Hemato-Oncology, University of Milan, Italy
| | | | - Roberto Piciotti
- Department of Oncology and Hemato-Oncology, University of Milan, Italy
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Viale Piazza D'Armi 1, Novara, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
| |
Collapse
|
15
|
Regen-Tuero HC, Ward RC, Sikov WM, Littrup PJ. Cryoablation and Immunotherapy for Breast Cancer: Overview and Rationale for Combined Therapy. Radiol Imaging Cancer 2021; 3:e200134. [PMID: 33817653 DOI: 10.1148/rycan.2021200134] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/17/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022]
Abstract
Cryoablation is a well-tolerated outpatient procedure that has been used to treat metastatic sites as well as small breast cancers in patients who are considered poor candidates for surgery. Recent studies suggest that cell disruption caused by cryoablation may increase the expression and immunogenicity of tumor neoantigens, which could enhance the ability of the immune system to recognize and attack cancer cells at both local and distant sites. Such an approach might broaden the role of immunotherapy for the treatment of breast cancer, which has previously demonstrated limited response to these agents, likely owing to the modest immunogenicity of most breast cancer subtypes. If cryoablation can induce a systemic tumor-specific response, it could enhance tumor susceptibility to immunotherapy agents. This review briefly summarizes the necessary components for generating an immune response against tumor cells, reviews the tumor microenvironment of breast cancer, describes the rationale for and limitations of immune checkpoint inhibition, highlights the potential for cryoablation to induce a systemic tumor-specific immune response, and describes the rationale for combining cryoablation and immune checkpoint inhibitors for the treatment of breast cancer. Keywords: Ablation Techniques, Breast, Neoplasms-Primary, Percutaneous, Tumor Microenvironment, Tumor Response, Ultrasonography © RSNA, 2021.
Collapse
Affiliation(s)
- Helaina C Regen-Tuero
- Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy St, Providence, RI 02903 (H.C.R.T., R.C.W.); Department of Diagnostic Imaging, Women and Infants Hospital of Rhode Island, Providence, RI (R.C.W.); Program in Women's Oncology, Warren Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, RI (W.M.S.); and Department of Diagnostic Radiology, Wayne State University, Ascension Providence Rochester Hospital, Rochester Hills, Mich (P.J.L.)
| | - Robert C Ward
- Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy St, Providence, RI 02903 (H.C.R.T., R.C.W.); Department of Diagnostic Imaging, Women and Infants Hospital of Rhode Island, Providence, RI (R.C.W.); Program in Women's Oncology, Warren Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, RI (W.M.S.); and Department of Diagnostic Radiology, Wayne State University, Ascension Providence Rochester Hospital, Rochester Hills, Mich (P.J.L.)
| | - William M Sikov
- Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy St, Providence, RI 02903 (H.C.R.T., R.C.W.); Department of Diagnostic Imaging, Women and Infants Hospital of Rhode Island, Providence, RI (R.C.W.); Program in Women's Oncology, Warren Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, RI (W.M.S.); and Department of Diagnostic Radiology, Wayne State University, Ascension Providence Rochester Hospital, Rochester Hills, Mich (P.J.L.)
| | - Peter J Littrup
- Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy St, Providence, RI 02903 (H.C.R.T., R.C.W.); Department of Diagnostic Imaging, Women and Infants Hospital of Rhode Island, Providence, RI (R.C.W.); Program in Women's Oncology, Warren Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, RI (W.M.S.); and Department of Diagnostic Radiology, Wayne State University, Ascension Providence Rochester Hospital, Rochester Hills, Mich (P.J.L.)
| |
Collapse
|
16
|
Wang R, Yang Y, Ye WW, Xiang J, Chen S, Zou WB, Wang XJ, Chen T, Cao WM. Case Report: Significant Response to Immune Checkpoint Inhibitor Camrelizumab in a Heavily Pretreated Advanced ER+/HER2- Breast Cancer Patient With High Tumor Mutational Burden. Front Oncol 2021; 10:588080. [PMID: 33634015 PMCID: PMC7900143 DOI: 10.3389/fonc.2020.588080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/18/2020] [Indexed: 12/28/2022] Open
Abstract
Endocrine treatment plus CDK4/6 inhibitors have become standard of care for estrogen receptor positive (ER+) breast cancer. Although immune checkpoint inhibitors (ICIs) have shown promising antitumor activity in a variety of cancer types, only limited success has been achieved for metastatic breast cancer (mBC) patients, especially the ER+ subtype, which usually exhibit lower tumor mutation burden (TMB) compared with other subtypes and therefore perceived as immunologically quiescent. Here we present a case of an ER+/HER2- but TMB-high mBC patient who had significant response to combination therapy with anti-PD-1 antibody camrelizumab and vinorelbine and obtained partial response (PR) with a progression-free survival (PFS) of 5 months after failure of multiple lines of therapy. Our case indicates that TMB may serve as a potential biomarker in immunotherapy selection for normally immunologically "cold" tumors such as ER+ mBC, also molecular monitoring during the whole treatment course plays an important role in patient management.
Collapse
Affiliation(s)
- Rong Wang
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | | | - Wei-Wu Ye
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | | | | | - Wei-Bin Zou
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiao-Jia Wang
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Tianhui Chen
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Department of Cancer Prevention, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
17
|
PI3KCA Mutations in Uterine Cervix Carcinoma. J Clin Med 2021; 10:jcm10020220. [PMID: 33435133 PMCID: PMC7827547 DOI: 10.3390/jcm10020220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/09/2022] Open
Abstract
Background: Squamous cervical carcinoma represents an infection-associated malignancy that produces a high mortality when metastatic or recurrent after primary local treatment. There is an urgent need for new therapies for this cancer. Molecular lesions in cervical cancer may provide opportunities for targeted therapies development. Methods: Publicly available data from the Cancer Genome Atlas (TCGA) were analyzed to define the molecular landscape of squamous cervical carcinomas with and without mutations of PIK3CA, the gene encoding the alpha catalytic subunit of phosphatidylinositol 3 kinase (PI3K). Associations with alterations in other critical genes and pathways of cancer and the total mutation burden and copy number alteration burden of cervical cancers were examined. Results: Mutations in PIK3CA are observed in 27.1% of squamous cervical cancers. PIK3CA represents the most frequently mutated gene in these cancers. Mutations in PIK3CA are associated with higher rates of mutations in other genes of important cancer-associated pathways such as the tyrosine kinase receptors/K-Ras/BRAF/MAPK and the Wnt/β catenin pathway. In addition, PIK3CA mutated cervical cancers display a higher tumor mutation burden (TMB) than non-mutated cancers. Conclusion: Frequent mutations of PIK3CA gene in squamous cervical carcinomas may represent an opportunity for targeted therapies development both inhibiting the PI3K kinase and associated pathway defects. Increased TMB may additionally confer immunotherapy sensitivity.
Collapse
|
18
|
Wu D, Zhao Z, Kim J, Razmi A, Wang LL, Kapate N, Gao Y, Peng K, Ukidve A, Mitragotri S. Gemcitabine and doxorubicin in immunostimulatory monophosphoryl lipid A liposomes for treating breast cancer. Bioeng Transl Med 2021; 6:e10188. [PMID: 33532588 PMCID: PMC7823124 DOI: 10.1002/btm2.10188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer therapy is increasingly shifting toward targeting the tumor immune microenvironment and influencing populations of tumor infiltrating lymphocytes. Breast cancer presents a unique challenge as tumors of the triple-negative breast cancer subtype employ a multitude of immunosilencing mechanisms that promote immune evasion and rapid growth. Treatment of breast cancer with chemotherapeutics has been shown to induce underlying immunostimulatory responses that can be further amplified with the addition of immune-modulating agents. Here, we investigate the effects of combining doxorubicin (DOX) and gemcitabine (GEM), two commonly used chemotherapeutics, with monophosphoryl lipid A (MPLA), a clinically used TLR4 adjuvant derived from liposaccharides. MPLA was incorporated into the lipid bilayer of liposomes loaded with a 1:1 molar ratio of DOX and GEM to create an intravenously administered treatment. In vivo studies indicated excellent efficacy of both GEM-DOX liposomes and GEM-DOX-MPLA liposomes against 4T1 tumors. In vitro and in vivo results showed increased dendritic cell expression of CD86 in the presence of liposomes containing chemotherapeutics and MPLA. Despite this, a tumor rechallenge study indicated little effect on tumor growth upon rechallenge, indicating the lack of a long-term immune response. GEM/DOX/MPLA-L displayed remarkable control of the primary tumor growth and can be further explored for the treatment of triple-negative breast cancer with other forms of immunotherapy.
Collapse
Affiliation(s)
- Debra Wu
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Zongmin Zhao
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Jayoung Kim
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Amaya Razmi
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Lily Li‐Wen Wang
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Yongsheng Gao
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Kevin Peng
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Anvay Ukidve
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| |
Collapse
|
19
|
Voutsadakis IA. The Landscape of Chromosome Instability in Breast Cancers and Associations with the Tumor Mutation Burden: An Analysis of Data from TCGA. Cancer Invest 2020; 39:25-38. [PMID: 33306412 DOI: 10.1080/07357907.2020.1863418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Chromosomal instability (CIN) is a defining characteristic of cancer and is part of the genetic instability of cancer. CIN results in both numeric alterations of chromosomes also called aneuploidy and in gains or losses of parts of chromosome arms but both usually coexist. The frequency and distribution of CIN varies between cancer types and even in the same cancer and breast cancer is no exception. Its presence may provide prognostic and therapeutic opportunities. METHODS CIN as measured with a score named Aneuploidy Score (AS) derived from single nucleotide polymorphism array studies was examined using the breast cancer study from the Cancer Genome Atlas (TCGA). Correlations of the AS with sub-types of breast cancer and with the tumor mutation burden (TMB) were examined. Specific copy number alterations contributing to the AS and their associations with sub-types were also investigated. RESULTS Most breast cancers (about 75% in the series) present some degree of CIN, having an AS of above 5. The remaining 25% have AS of 5 or below. Luminal A sub-type is over-represented in cancers with low AS while the reverse is true for cancers with high AS where the percentage of the three other sub-types, luminal B, Her2 positive and basal is higher. Common gains of chromosomal arms are observed in 1q, 8q and 16p and losses are commonly present in 16q, 17p and 8p but with variability among sub-types. A chromosome loss characterizing basal cancers is observed at 5q. No association of AS with TMB is observed in breast cancer. AS was not predictive for survival outcomes in the entire cohort of breast cancers, but PFS was significant worse in luminal B cancers with high AS. CONCLUSION The copy number alterations landscape of breast cancer reveals specific abnormalities in each sub-type and may help further characterize these sub-types in order to refine classification of these cancers and promote prognostic and therapeutic advancements in the clinic.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, Ontario, Canada.,Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
20
|
Aoude LG, Bonazzi VF, Brosda S, Patel K, Koufariotis LT, Oey H, Nones K, Wood S, Pearson JV, Lonie JM, Arneil M, Atkinson V, Smithers BM, Waddell N, Barbour AP. Pathogenic germline variants are associated with poor survival in stage III/IV melanoma patients. Sci Rep 2020; 10:17687. [PMID: 33077847 PMCID: PMC7572377 DOI: 10.1038/s41598-020-74956-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Patients with late stage resected cutaneous melanoma have poor overall survival (OS) and experience irreversible adverse events from systemic therapy. There is a clinical need to identify biomarkers to predict outcome. Performing germline/tumour whole-exome sequencing of 44 stage III/IV melanoma patients we identified pathogenic germline mutations in CDKN2A, CDK4, ATM, POLH, MRE11A, RECQL4 and XPC, affecting 7/44 patients. These mutations were associated with poor OS (p = 0.0082). We confirmed our findings in The Cancer Genome Atlas (TCGA) human skin cutaneous melanoma cohort where we identified pathogenic variants in 40/455 patients (p = 0.0203). Combining these cohorts (n = 499) further strengthened these findings showing germline carriers had worse OS (p = 0.0009). Additionally, we determined whether tumour mutation burden (TMB) or BRAF status were prognostic markers of survival. Low TMB rate (< 20 Mut/Mb; p = 0.0034) and BRAF p.V600 mutation (p = 0.0355) were associated with worse progression-free survival. Combining these biomarkers indicated that V600 mutant patients had significantly lower TMB (p = 0.0155). This was confirmed in the TCGA (n = 443, p = 0.0007). Integrative analysis showed germline mutation status conferred the highest risk (HR 5.2, 95% CI 1.72–15.7). Stage IV (HR 2.5, 0.74–8.6) and low TMB (HR 2.3, 0.57–9.4) were similar, whereas BRAF V600 status was the weakest prognostic biomarker (HR 1.5, 95% CI 0.44–5.2).
Collapse
Affiliation(s)
- Lauren G Aoude
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| | - Vanessa F Bonazzi
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Sandra Brosda
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Kalpana Patel
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | | | - Harald Oey
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Katia Nones
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Scott Wood
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - James M Lonie
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Melissa Arneil
- Division of Cancer Services, Princess Alexandra Hospital, Woolloongabba, QLD, 4102, Australia
| | - Victoria Atkinson
- Queensland Melanoma Project, Princess Alexandra Hospital, Woolloongabba, QLD, 4102, Australia.,Faculty of Medicine, University of Queensland, St Lucia, QLD, 4067, Australia
| | - B Mark Smithers
- Queensland Melanoma Project, Princess Alexandra Hospital, Woolloongabba, QLD, 4102, Australia.,Faculty of Medicine, University of Queensland, St Lucia, QLD, 4067, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Andrew P Barbour
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia.,Queensland Melanoma Project, Princess Alexandra Hospital, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
21
|
Zhang X, Li J, Yang Q, Wang Y, Li X, Liu Y, Shan B. Tumor mutation burden and JARID2 gene alteration are associated with short disease-free survival in locally advanced triple-negative breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1052. [PMID: 33145271 PMCID: PMC7576007 DOI: 10.21037/atm-20-3773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background In locally advanced triple-negative breast cancer (TNBC), patients who did not achieve pathologic complete response (non-pCR) after neoadjuvant chemotherapy develop rapid tumor metastasis. Tumor mutation burden (TMB) is a potential biomarker of cancer therapy, though whether it is applicable to TNBC is still unclear. Methods A total of 14 non-pCR TNBC patients were enrolled, and tissue samples from radical operation were collected. Of these, 7 cases developed disease progression within 12 months after operation [short disease-free survival (short DFS)], while others showed longer DFS over 1 year (long DFS). Next generation sequencing (NGS) analysis targeting 422 cancer-related genes and in vitro studies were performed. Results A total of 72 mutations were detected within 14 patients, which ranged from 1 to 8 per patient with a median mutations number of 5. The median number of mutations in the short-DFS group was higher than that in the long-DFS group (6.0 vs. 4.3; P=0.094). Furthermore, 6 gene mutation types were detected, with missense mutations displayed in the majority (36/72, 50.0%). No correlation between mutation type and DFS was found. Among 422 cancer-related genes, alterations in 30 genes were detected. TP53 (12/14, 85.7%) was the most common mutation gene in the entire cohort. RB1 mutations significantly occurred in patients with high Ki-67 scores (P=0.013). Additionally, 4 mutations of PTPN13 (57.1%, 4/7) and 3 of JARID2 (42.9%, 3/7) were only detected in the short-DFS group, while patients with JARID2 mutation had a significantly shorter DFS period (P=0.026). Experiments in vitro confirmed that JARID2 gene was widely expressed in various breast cancer cell lines. Knockdown of JARID2 in MD-MBA-231 cells by small interfering RNA (siRNA) decreased the expression of E-cadherin, and increased the levels of vimentin, MMP7, and MMP9. Conclusions In non-pCR TNBC, JARID2 mutation and TMB elevated in patients with short-DFS, indicating the potential prognostic biomarkers and therapeutic molecular targets for locally advanced TNBC.
Collapse
Affiliation(s)
- Xiangmei Zhang
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingping Li
- Breast Cancer Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qing Yang
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanfang Wang
- Medical Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinhui Li
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunjiang Liu
- Breast Cancer Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baoen Shan
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
22
|
Corchado-Cobos R, García-Sancha N, González-Sarmiento R, Pérez-Losada J, Cañueto J. Cutaneous Squamous Cell Carcinoma: From Biology to Therapy. Int J Mol Sci 2020; 21:ijms21082956. [PMID: 32331425 PMCID: PMC7216042 DOI: 10.3390/ijms21082956] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the second most frequent cancer in humans and its incidence continues to rise. Although CSCC usually display a benign clinical behavior, it can be both locally invasive and metastatic. The signaling pathways involved in CSCC development have given rise to targetable molecules in recent decades. In addition, the high mutational burden and increased risk of CSCC in patients under immunosuppression were part of the rationale for developing the immunotherapy for CSCC that has changed the therapeutic landscape. This review focuses on the molecular basis of CSCC and the current biology-based approaches of targeted therapies and immune checkpoint inhibitors. Another purpose of this review is to explore the landscape of drugs that may induce or contribute to the development of CSCC. Beginning with the pathogenetic basis of these drug-induced CSCCs, we move on to consider potential therapeutic opportunities for overcoming this adverse effect.
Collapse
Affiliation(s)
- Roberto Corchado-Cobos
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC)-Centro de Investigación del cáncer (CIC)-CSIC, Laboratory 7, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (J.P.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Hospital Virgen de la Vega, 37007 Salamanca, Spain;
| | - Natalia García-Sancha
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC)-Centro de Investigación del cáncer (CIC)-CSIC, Laboratory 7, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (J.P.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Hospital Virgen de la Vega, 37007 Salamanca, Spain;
| | - Rogelio González-Sarmiento
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Hospital Virgen de la Vega, 37007 Salamanca, Spain;
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC)-Centro de Investigación del cáncer (CIC)-CSIC, Laboratory 7, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (J.P.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Hospital Virgen de la Vega, 37007 Salamanca, Spain;
| | - Javier Cañueto
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC)-Centro de Investigación del cáncer (CIC)-CSIC, Laboratory 7, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (J.P.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Hospital Virgen de la Vega, 37007 Salamanca, Spain;
- Department of Dermatology, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-923-291-100 (ext. 55574)
| |
Collapse
|