1
|
Mapendano CK, Nøhr AK, Sønderkær M, Pagh A, Carus A, Lörincz T, Haslund CA, Poulsen LØ, Ernst A, Bødker JS, Dahl SC, Sunde L, Brügmann AH, Vesteghem C, Pedersen IS, Ladekarl M. Longer survival with precision medicine in late-stage cancer patients. ESMO Open 2025; 10:104089. [PMID: 39754975 PMCID: PMC11758131 DOI: 10.1016/j.esmoop.2024.104089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND In a per-protocol analysis of molecularly profiled patients with treatment-refractory, end-stage cancer discussed at the National Molecular Tumor Board (NMTB), we aimed to assess the overall survival (OS) outcome of targeted treatment compared with no targeted treatment. MATERIALS AND METHODS Patients were prospectively included at a single oncological center. Whole exome and RNA sequencing (tumor-normal) were carried out, and cases were presented at the NMTB for discussion of targeted treatment. Treatment was available through a basket trial, by compassionate use or in early clinical trials. RESULTS One hundred and ninety-six patients were included from 2020 to 2023. In all but three patients a driver variant was disclosed, while 42% had simultaneous affection of more than three oncogenic pathways. In 42% of patients a druggable target was identified but two-thirds did not receive the suggested treatment. The fraction of patients initiating treatment yearly rose from 8% to 22%. For patients treated (N = 30), the clinical benefit rate was 44% and median time on treatment was 3.5 months. Druggable targets were enriched in lung cancers, while patients receiving or not receiving targeted treatment had similar clinical characteristics. The median OS was longer for patients receiving targeted treatment (15 months), but similar for patients with no druggable target and suggested targeted treatment not initiated (5 and 6 months, respectively) (P = 0.004). In multivariate analysis, targeted treatment (hazard ratio 0.43, confidence interval 0.25-0.72), few metastatic sites, and adenocarcinoma histology were predictive of improved OS while alterations of the RTK/RAS pathway were prognostically unfavorable. CONCLUSIONS Tissue-agnostic targeted treatment based on molecular tumor profiling is possible in an increasing fraction of end-stage cancer patients. In those who receive targeted treatment, results strongly suggest a significant survival benefit.
Collapse
Affiliation(s)
- C K Mapendano
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - A K Nøhr
- Center for Clinical Data Science, Aalborg University and Aalborg University Hospital, Aalborg, Denmark
| | - M Sønderkær
- Molecular Diagnostics and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - A Pagh
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - A Carus
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - T Lörincz
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - C A Haslund
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - L Ø Poulsen
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - A Ernst
- Molecular Diagnostics and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - J S Bødker
- Molecular Diagnostics and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - S C Dahl
- Center for Clinical Data Science, Aalborg University and Aalborg University Hospital, Aalborg, Denmark
| | - L Sunde
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Clinical Genetics and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - A H Brügmann
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - C Vesteghem
- Center for Clinical Data Science, Aalborg University and Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - I S Pedersen
- Molecular Diagnostics and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - M Ladekarl
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
2
|
Wilfong L, Baggett L, Reena P, Murphy R, Singh H, Kluetz P, Byrd B, McDonough R, Reddy S, Brito RR. Administrative Aspects of Molecular Diagnostics-Oversight, Regulatory Approval Process, Clinical and Operational Workflows, and Payment Models. JCO Oncol Pract 2024; 20:1501-1507. [PMID: 39531846 DOI: 10.1200/op.23.00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/28/2024] [Accepted: 07/24/2024] [Indexed: 11/16/2024] Open
Abstract
This paper discusses the administrative aspects of molecular diagnostics in oncology, including US Food and Drug Administration (FDA) oversight, the regulatory approval process, clinical, and operational workflows, and payment models. Comprehensive molecular testing is important to deliver optimal oncology care and improve patient outcomes. Despite the potential benefits of testing, utilization remains low. The FDA regulatory approval process is reviewed for in vitro diagnostic products, which includes classification into three regulatory classes on the basis of risk. Companion diagnostic devices are used to guide treatment decisions. The clinical and operational challenges associated with molecular testing in oncology are also discussed, including the rapidly evolving landscape of precision oncology, the wide range of biomarker testing options, and complexities of test ordering, interpretation, and result delivery. There is a need for a multifaceted support approach involving education, technology enhancements, and workflow support to overcome these challenges. In terms of payment models, coverage policies between Medicare and commercial payers are compared with differences in coverage criteria, with Medicare focusing on FDA approval or clearance, whereas commercial payers consider additional factors such as National Comprehensive Cancer Network and ASCO guidelines. Commercial payers tend to cover smaller panels on the basis of guideline-recommended biomarkers, whereas coverage for broad tumor profiling is limited. Several strategies can increase the utilization of molecular testing, including integrating test results into electronic medical record platforms, standardizing billing practices, increasing clinical trials, and primary literature supporting the use of molecular testing, educating physicians, and using tumor boards for result interpretation and treatment discussions.
Collapse
Affiliation(s)
| | | | - Philip Reena
- U.S. Food and Drug Administration, Silver Spring, MD
| | | | | | - Paul Kluetz
- U.S. Food and Drug Administration, Silver Spring, MD
| | | | | | | | | |
Collapse
|
3
|
van Schaik LF, Engelhardt EG, Wilthagen EA, Steeghs N, Fernández Coves A, Joore MA, van Harten WH, Retèl VP. Factors for a broad technology assessment of comprehensive genomic profiling in advanced cancer, a systematic review. Crit Rev Oncol Hematol 2024; 202:104441. [PMID: 39002790 DOI: 10.1016/j.critrevonc.2024.104441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024] Open
Abstract
Comprehensive Genomic Profiling (CGP) allows for the identification of many targets. Reimbursement decision-making is, however, challenging because besides the health benefits of on-label treatments and costs, other factors related to diagnostic and treatment pathways may also play a role. The aim of this study was to identify which other factors are relevant for the technology assessment of CGP and to summarize the available evidence for these factors. After a scoping search and two expert sessions, five factors were identified: feasibility, test journey, wider implications of diagnostic results, organisation of laboratories, and "scientific spillover". Subsequently, a systematic search identified 83 studies collecting mainly evidence for the factors "test journey" and "wider implications of diagnostic results". Its nature was, however, of limited value for decision-making. We recommend the use of comparative strategies, uniformity in outcome definitions, and the inclusion of a comprehensive set of factors in future evidence generation.
Collapse
Affiliation(s)
- L F van Schaik
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, P.O. Box 90103, Amsterdam 1006 BE, the Netherlands; Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, the Netherlands.
| | - E G Engelhardt
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, P.O. Box 90103, Amsterdam 1006 BE, the Netherlands.
| | - E A Wilthagen
- Scientific Information Service, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam CX 1066, the Netherlands.
| | - N Steeghs
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam CX 1066, the Netherlands.
| | - A Fernández Coves
- Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), P. Debyelaan 25, Oxford Building, P.O. Box 5800a, Maastricht, Limburg, the Netherlands; Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands.
| | - M A Joore
- Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), P. Debyelaan 25, Oxford Building, P.O. Box 5800a, Maastricht, Limburg, the Netherlands; Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands.
| | - W H van Harten
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, P.O. Box 90103, Amsterdam 1006 BE, the Netherlands; Department of Health Technology and Services Research, University of Twente, Enschede, the Netherlands.
| | - V P Retèl
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, P.O. Box 90103, Amsterdam 1006 BE, the Netherlands; Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Farah E, Kenney M, Warkentin MT, Cheung WY, Brenner DR. Examining external control arms in oncology: A scoping review of applications to date. Cancer Med 2024; 13:e7447. [PMID: 38984669 PMCID: PMC11234289 DOI: 10.1002/cam4.7447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024] Open
Abstract
OBJECTIVES Randomized controlled trials (RCTs) are the gold standard for evaluating the comparative efficacy and safety of new cancer therapies. However, enrolling patients in control arms of clinical trials can be challenging for rare cancers, particularly in the context of precision oncology and targeted therapies. External Control Arms (ECAs) are a potential solution to address these challenges in clinical research design. We conducted a scoping review to explore the use of ECAs in oncology. METHODS We systematically searched four databases, namely MEDLINE, EMBASE, Web of Science, and Scopus. We screened titles, abstracts, and full texts for eligible articles focusing on patients undergoing therapy for cancer, employing ECAs, and reporting clinical outcomes. RESULTS Of the 629 articles screened, 23 were included in this review. The earliest included studies were published in 1996, while most studies were published in the past 5 years. 44% (10/23) of ECAs were employed in blood-related cancer studies. Geographically, 30% (7/23) of studies were conducted in the United States, 22% (5/23) in Japan, and 9% (2/23) in South Korea. The primary data sources used to construct the ECAs involved pooled data from previous trials (35%, 8/23), administrative health databases (17%, 4/23) and electronic medical records (17%, 4/23). While 52% (12/23) of the studies employed methods to align treatment and ECAs characteristics, 48% (11/23) lacked explicit strategies. CONCLUSION ECAs offer a valuable approach in oncology research, particularly when alternative designs are not feasible. However, careful methodological planning and detailed reporting are essential for meaningful and reliable results.
Collapse
Affiliation(s)
- Eliya Farah
- Department of Oncology, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health Sciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Matthew Kenney
- Department of Oncology, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health Sciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Matthew T. Warkentin
- Department of Oncology, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health Sciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Winson Y. Cheung
- Department of Oncology, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health Sciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Darren R. Brenner
- Department of Oncology, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health Sciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
5
|
Wallenta Law J, Bapat B, Sweetnam C, Mohammed H, McBratney A, Izano MA, Scannell Bryan M, Spencer S, Schroeder B, Hostin D, Simon GR, Berry AB. Real-World Impact of Comprehensive Genomic Profiling on Biomarker Detection, Receipt of Therapy, and Clinical Outcomes in Advanced Non-Small Cell Lung Cancer. JCO Precis Oncol 2024; 8:e2400075. [PMID: 38754057 PMCID: PMC11371096 DOI: 10.1200/po.24.00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 05/18/2024] Open
Abstract
PURPOSE Therapeutic decision making for patients with advanced non-small cell lung cancer (aNSCLC) includes a growing number of options for genomic, biomarker-guided, targeted therapies. We compared actionable biomarker detection, targeted therapy receipt, and real-world overall survival (rwOS) in patients with aNSCLC tested with comprehensive genomic profiling (CGP) versus small panel testing (SP) in real-world community health systems. METHODS Patients older than 18 years diagnosed with aNSCLC between January 1, 2015, and December 31, 2020, who received biomarker testing were followed until death or study end (September 30, 2021), and categorized by most comprehensive testing during follow-up: SP (≤52 genes) or CGP (>52 genes). RESULTS Among 3,884 patients (median age, 68 years; 50% female; 73% non-Hispanic White), 20% received CGP and 80% SP. The proportion of patients with ≥one actionable biomarker (actionability) was significantly higher in CGP than in SP (32% v 14%; P < .001). Of patients with actionability, 43% (CGP) and 38% (SP) received matched therapies (P = .20). Among treated patients, CGP before first-line treatment was associated with higher likelihood of matched therapy in any line (odds ratio, 3.2 [95% CI, 1.84 to 5.53]). CGP testing (hazard ratio [HR], 0.80 [95% CI, 0.72 to 0.89]) and actionability (HR, 0.84 [95% CI, 0.77 to 0.91]) were associated with reduced risk of mortality. Among treated patients with actionability, matched therapy receipt showed improved median rwOS in months in CGP (34 [95% CI, 21 to 49] matched v 14 [95% CI, 10 to 18] unmatched) and SP (27 [95% CI, 21 to 43] matched v 10 [95% CI, 8 to 14] unmatched). CONCLUSION Patients who received CGP had improved detection of actionable biomarkers and greater use of matched therapies, both of which were associated with significant increases in survival.
Collapse
|
6
|
Andrew EC, Lewin J, Desai J, Orme L, Hamilton A, Bae S, Zhu W, Nicolson S, Varghese LN, Mitchell CB, Vissers JHA, Xu H, Grimmond SM, Fox SB, Luen SJ. Clinical Impact of Comprehensive Molecular Profiling in Adolescents and Young Adults with Sarcoma. J Pers Med 2024; 14:128. [PMID: 38392562 PMCID: PMC10890624 DOI: 10.3390/jpm14020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Sarcomas are a heterogenous group of tumours that commonly carry poor prognosis with limited therapeutic options. Adolescents and young adults (AYAs) with sarcoma are a unique and understudied patient population that have only achieved modest survival gains compared to other groups. We present our institutional experience of AYAs with sarcoma who underwent comprehensive molecular profiling (CMP) via either large-panel targeted DNA sequencing or whole genome and transcriptome sequencing and evaluated the feasibility and clinical impact of this approach. Genomic variants detected were determined to be clinically relevant and actionable following evaluation by the Molecular Tumour Board. Clinicians provided feedback regarding the utility of testing three months after reporting. Twenty-five patients who were recruited for CMP are included in this analysis. The median time from consent to final molecular report was 45 days (interquartile range: 37-57). Potentially actionable variants were detected for 14 patients (56%), and new treatment recommendations were identified for 12 patients (48%). Pathogenic germline variants were identified in three patients (12%), and one patient had a change in diagnosis. The implementation of CMP for AYAs with sarcoma is clinically valuable, feasible, and should be increasingly integrated into routine clinical practice as technologies and turnaround times continue to improve.
Collapse
Affiliation(s)
- Eden C Andrew
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
- Children's Cancer Centre, Royal Children's Hospital, Parkville, VIC 3052, Australia
- Victorian Adolescent and Young Adult Cancer Service, Parkville, VIC 3000, Australia
| | - Jeremy Lewin
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
- Victorian Adolescent and Young Adult Cancer Service, Parkville, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jayesh Desai
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Lisa Orme
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
- Children's Cancer Centre, Royal Children's Hospital, Parkville, VIC 3052, Australia
- Victorian Adolescent and Young Adult Cancer Service, Parkville, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Anne Hamilton
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Susie Bae
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Wenying Zhu
- Centre for Cancer Research and Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Shannon Nicolson
- Centre for Cancer Research and Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Leila N Varghese
- Centre for Cancer Research and Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Camilla B Mitchell
- Centre for Cancer Research and Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Joseph H A Vissers
- Centre for Cancer Research and Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Huiling Xu
- Department of Pathology and Cancer Research Division, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Sean M Grimmond
- Centre for Cancer Research and Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stephen B Fox
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Pathology and Cancer Research Division, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Stephen J Luen
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
7
|
Matsubara J, Mukai K, Kondo T, Yoshioka M, Kage H, Oda K, Kudo R, Ikeda S, Ebi H, Muro K, Hayashi R, Tokudome N, Yamamoto N, Muto M. First-Line Genomic Profiling in Previously Untreated Advanced Solid Tumors for Identification of Targeted Therapy Opportunities. JAMA Netw Open 2023; 6:e2323336. [PMID: 37459099 DOI: 10.1001/jamanetworkopen.2023.23336] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
IMPORTANCE Precision oncology using comprehensive genomic profiling (CGP) by next-generation sequencing is aimed at companion diagnosis and genomic profiling. The clinical utility of CGP before the standard of care (SOC) is still not resolved, and more evidence is needed. OBJECTIVE To investigate the clinical utility of next-generation CGP (FoundationOne CDx [F1CDx]) in patients with previously untreated metastatic or recurrent solid tumors. DESIGN, Setting, and Participants This multicenter, prospective, observational cohort study enrolled patients with previously untreated advanced solid tumors between May 18, 2021, and February 16, 2022, with follow-up through August 16, 2022. The study was conducted at 6 hospitals in Japan. Eligible patients were aged 20 years or older and had Eastern Cooperative Oncology Group performance status of 0 to 1 with previously untreated metastatic or recurrent cancers in the gastrointestinal or biliary tract; pancreas, lung, breast, uterus, or ovary; and malignant melanoma. EXPOSURE Comprehensive genomic profiling testing before SOC for advanced solid tumors. MAIN OUTCOMES AND MEASURES Proportion of patients with actionable or druggable genomic alterations and molecular-based recommended therapy (MBRT). RESULTS A total of 183 patients met the inclusion criteria and 180 patients (92 men [51.1%]) with a median age of 64 years (range, 23-88 years) subsequently underwent CGP (lung [n = 28], colon/small intestine [n = 27], pancreas [n = 27], breast [n = 25], biliary tract [n = 20], gastric [n = 19], uterus [n = 12], esophagus [n = 10], ovary [n = 6], and skin melanoma [n = 6]). Data from 172 patients were available for end point analyses. Actionable alterations were found in 172 patients (100.0%; 95% CI, 97.9%-100.0%) and druggable alternations were identified in 109 patients (63.4%; 95% CI, 55.7%-70.6%). The molecular tumor board identified MBRT for 105 patients (61.0%; 95% CI, 53.3%-68.4%). Genomic alterations included in the companion diagnostics list of the CGP test were found in 49 patients (28.5%; 95% CI, 21.9%-35.9%) in a tumor-agnostic setting. After a median follow-up of 7.9 months (range, 0.5-13.2 months), 34 patients (19.8%; 95% CI, 14.1%-26.5%) received MBRT. CONCLUSIONS AND RELEVANCE The findings of this study suggest that CGP testing before SOC for patients with advanced solid tumors may be clinically beneficial to guide the subsequent anticancer therapies, including molecularly matched treatments.
Collapse
Affiliation(s)
- Junichi Matsubara
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Kumi Mukai
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Tomohiro Kondo
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Masahiro Yoshioka
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Hidenori Kage
- Department of Clinical Genomics, The University of Tokyo Hospital, Tokyo, Japan
| | - Katsutoshi Oda
- Department of Clinical Genomics, The University of Tokyo Hospital, Tokyo, Japan
| | - Ryo Kudo
- Department of Precision Cancer Medicine, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Sadakatsu Ikeda
- Department of Precision Cancer Medicine, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Hiromichi Ebi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Ryuji Hayashi
- Department of Clinical Oncology, Toyama University Hospital, Toyama, Japan
| | - Nahomi Tokudome
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | | | - Manabu Muto
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|