1
|
Shirima CA, Bleotu C, Spandidos DA, El-Naggar AK, Pircalabioru GG, Michalopoulos I. Epithelial‑derived head and neck squamous tumourigenesis (Review). Oncol Rep 2024; 52:141. [PMID: 39219259 PMCID: PMC11358675 DOI: 10.3892/or.2024.8800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs), a heterogeneous group of cancers that arise from the mucosal epithelia cells in the head and neck areas, present great challenges in diagnosis, treatment and prognosis due to their complex aetiology and various clinical manifestations. Several factors, including smoking, alcohol consumption, oncogenic genes, growth factors, Epstein‑Barr virus and human papillomavirus infections can contribute to HNSCC development. The unpredictable tumour microenvironment adds to the complexity of managing HNSCC. Despite significant advances in therapies, the prediction of outcome after treatment for patients with HNSCC remains poor, and the 5‑year overall survival rate is low due to late diagnosis. Early detection greatly increases the chances of successful treatment. The present review aimed to bring together the latest findings related to the molecular mechanisms of HNSCC carcinogenesis and progression. Comprehensive genomic, transcriptomic, metabolomic, microbiome and proteomic analyses allow researchers to identify important biological markers such as genetic alterations, gene expression signatures and protein markers that drive HNSCC tumours. These biomarkers associated with the stages of initiation, progression and metastasis of cancer are useful in the management of patients with cancer in order to improve their life expectancy and quality of life.
Collapse
Affiliation(s)
- Charles Adolfu Shirima
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania
| | - Coralia Bleotu
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Adel K. El-Naggar
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | | | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
2
|
Mirisola MG, Longo VD. Inactivation of Ymr1, Sjl2/3 phosphatases promotes stress resistance and longevity in wild type and Ras2G19V yeast. Biomed J 2024; 47:100694. [PMID: 38154617 PMCID: PMC10950826 DOI: 10.1016/j.bj.2023.100694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023] Open
Abstract
In Saccharomyces cerevisiae, RAt Sarcoma (Ras) activity plays a central role in mediating the effect of glucose in decreasing stress resistance and longevity, with constitutive Ras activation mutations promoting cell growth and oncogenesis. Here, we used transposon mutagenesis in yeast to identify suppressors of the constitutively active Ras2G19V, orthologue of the KRASG12C mammalian oncogene. We identified mutations in Yeast Myotubularin Related (YMR1), SynaptoJanin-Like (SJL2) and SJL3 phosphatases, which target phosphatidylinositol phosphates, as the most potent suppressors of constitutive active Ras, able to reverse its effect on stress sensitization and sufficient to extend longevity. In sjl2 mutants, the staining of Ras-GTP switched from membrane-associated to a diffuse cytoplasmic staining, suggesting that it may block Ras activity by preventing its localization. Whereas expression of the Sjl2 PI 3,4,5 phosphatase mediated stress sensitization in both the Ras2G19V and wild type backgrounds, overexpression of the phosphatidylinositol 3 kinase VPS34 (Vacuolar Protein Sorting), promoted heat shock sensitization only in the Ras2G19V background, suggesting a complex relationship between different phosphatidylinositol and stress resistance. These results provide potential targets to inhibit the growth of cancer cells with constitutive Ras activity and link the glucose-dependent yeast pro-aging Ras signaling pathway to the well-established pro-aging PhosphoInositide 3-Kinase(PI3K) pathway in worms and other species raising the possibility that the conserved longevity effect of mutations in the PI3K-AKT (AK strain Transforming) pathway may involve inhibition of Ras signaling.
Collapse
Affiliation(s)
- M G Mirisola
- SteBiCeF Department, University of Palermo, Palermo, Italy.
| | - V D Longo
- IFOM, AIRC Institute of Molecular Oncology, Milan, Italy; Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Ludwig ML, Michmerhuizen NL, Wang J, Birkeland AC, Majchrowski BK, Nimmagadda S, Zhai J, Bhangale A, Kulkarni A, Jiang H, Swiecicki PL, Brenner JC. Multi-kinase compensation rescues EGFR knockout in a cell line model of head and neck squamous cell carcinoma. Arch Oral Biol 2023; 156:105822. [PMID: 37844343 PMCID: PMC11209876 DOI: 10.1016/j.archoralbio.2023.105822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a debilitating disease with poor survival rates. While the epidermal growth factor receptor (EGFR)-targeting antibody Cetuximab is approved for treatment, responses are limited and the molecular mechanisms driving resistance remain incompletely understood. METHODS To better understand how cells survive without EGFR activity, we developed an EGFR knockout derivative of the UM-SCC-92 cell line using CRISPR/Cas9 technology. We then characterized changes to the transcriptome with RNAseq and changes in response to kinase inhibitors with resazurin cell viability assays. Finally, we tested if inhibitors with activity in the EGFR knockout model also had synergistic activity in combination with EGFR inhibitors in either wild type UM-SCC-92 cells or a known Cetuximab-resistant model. RESULTS Functional and molecular analysis showed that knockout cells had decreased cell proliferation, upregulation of FGFR1 expression, and an enhanced mesenchymal phenotype. In fact, expression of common EMT genes including VIM, SNAIL1, ZEB1 and TWIST1 were all upregulated in the EGFR knockout. Surprisingly, EGFR knockout cells were resistant to FGFR inhibitor monotherapies, but sensitive to combinations of FGFR and either XIAP or IGF-1R inhibitors. Accordingly, both wild type UM-SCC-92 and Cetuximab-resistant UM-SCC-104 cells with were sensitive to combined inhibition of EGFR, FGFR and either XIAP or IGF-1R. CONCLUSIONS These data offer insights into EGFR inhibitor resistance and show that resistance to EGFR knockout likely occurs through a complex network of kinases. Future studies of cetuximab-resistant HNSCC tumors are warranted to determine if this EMT phenotype and/or multi-kinase resistance is observed in patients.
Collapse
Affiliation(s)
- Megan L Ludwig
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Nicole L Michmerhuizen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jiayu Wang
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Andrew C Birkeland
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Behirda K Majchrowski
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Sai Nimmagadda
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jingyi Zhai
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Apurva Bhangale
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Aditi Kulkarni
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Hui Jiang
- Rogel Cancer Center University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Paul L Swiecicki
- Department of Hematology Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Rogel Cancer Center University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - J Chad Brenner
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Rogel Cancer Center University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|