1
|
Tang X, Huang Y, Li Y, Wang L, Pei X, Zhou D, He P, Hughes SS. Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111699. [PMID: 33396030 DOI: 10.1016/j.ecoenv.2020.111699] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/01/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Extensive industrial activities have led to an increase of the content of chromium in the environment, which causes serious pollution to the surrounding water, soil and atmosphere. The enrichment of chromium in the environment through the food chain ultimately affects human health. Therefore, the remediation of chromium pollution is crucial to development of human society. A lot of scholars have paid attention to bioremediation technology owing to its environmentally friendly and low-cost. Previous reviews mostly involved pure culture of microorganisms and rarely discussed the optimization of bioreduction conditions. To make up for these shortcomings, we not only introduced in detail the conditions that affect microbial reduction but also innovatively introduced consortium which may be the cornerstone for future treatment of complex field environments. The aim of this study is to summary chromium toxicity, factors affecting microbial remediation, and methods for enhancing bioremediation. However, the actual application of bioremediation technology is still facing a major challenge. This study also put forward the current research problems and proposed future research directions, providing theoretical guidance and scientific basis for the application of bioremediation technology.
Collapse
Affiliation(s)
- Xue Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China; State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China.
| | - Ying Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Li Wang
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Xiangjun Pei
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Dan Zhou
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Peng He
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Scott S Hughes
- Department of Geosciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
2
|
Pradhan D, Sukla LB, Sawyer M, Rahman PK. Recent bioreduction of hexavalent chromium in wastewater treatment: A review. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.06.040] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
3
|
Abstract
Chromium is ubiquitous in the environment as Cr(III) and Cr(VI) oxidation states, which interconvert under environmentally and biologically relevant conditions (although Cr(III) usually predominates). While Cr(VI) is an established human carcinogen and a major occupational and environmental hazard, Cr(III) has long been regarded as an essential human micronutrient, although recent literature has cast serious doubts on the validity of this postulate. Despite five decades of research, no functional Cr-containing enzymes or cofactors have been characterized conclusively, and several hypotheses on their possible structures have been refuted. Gastrointestinal absorption pathways for both Cr(III) and Cr(VI) are apparent and whole-blood speciation can involve Cr(VI) uptake and reduction by red blood cells, as well as Cr(III) binding to both proteins and low-molecular-mass ligands in the plasma. DNA-damaging effects of Cr(VI) and anti-diabetic activities of Cr(III) are likely to arise from common mechanistic pathways that involve reactive Cr(VI/V/IV) intermediates and kinetically inert Cr(III)-protein and Cr(III)-DNA adducts. Both Cr(III) and Cr(VI) are toxic to plants and microorganisms, particularly Cr(VI) due to its higher bioavailability and redox chemistry. Some bacteria reduce Cr(VI) to Cr(III) without the formation of toxic Cr(V) intermediates and these bacteria are being considered for use in the bioremediation of Cr(VI)-polluted environments.
Collapse
Affiliation(s)
- Peter A. Lay
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia
| | - Aviva Levina
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|