1
|
Giniūnaitė R, Baker RE, Kulesa PM, Maini PK. Modelling collective cell migration: neural crest as a model paradigm. J Math Biol 2020; 80:481-504. [PMID: 31587096 PMCID: PMC7012984 DOI: 10.1007/s00285-019-01436-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/09/2019] [Indexed: 12/01/2022]
Abstract
A huge variety of mathematical models have been used to investigate collective cell migration. The aim of this brief review is twofold: to present a number of modelling approaches that incorporate the key factors affecting cell migration, including cell-cell and cell-tissue interactions, as well as domain growth, and to showcase their application to model the migration of neural crest cells. We discuss the complementary strengths of microscale and macroscale models, and identify why it can be important to understand how these modelling approaches are related. We consider neural crest cell migration as a model paradigm to illustrate how the application of different mathematical modelling techniques, combined with experimental results, can provide new biological insights. We conclude by highlighting a number of future challenges for the mathematical modelling of neural crest cell migration.
Collapse
Affiliation(s)
- Rasa Giniūnaitė
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK.
| | - Ruth E Baker
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK
| | - Paul M Kulesa
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK
| |
Collapse
|
2
|
Abstract
There are numerous biological scenarios in which populations of cells migrate in crowded environments. Typical examples include wound healing, cancer growth, and embryo development. In these crowded environments cells are able to interact with each other in a variety of ways. These include excluded-volume interactions, adhesion, repulsion, cell signaling, pushing, and pulling. One popular way to understand the behavior of a group of interacting cells is through an agent-based mathematical model. A typical aim of modellers using such representations is to elucidate how the microscopic interactions at the cell-level impact on the macroscopic behavior of the population. At the very least, such models typically incorporate volume-exclusion. The more complex cell-cell interactions listed above have also been incorporated into such models; all apart from cell-cell pulling. In this paper we consider this under-represented cell-cell interaction, in which an active cell is able to "pull" a nearby neighbor as it moves. We incorporate a variety of potential cell-cell pulling mechanisms into on- and off-lattice agent-based volume exclusion models of cell movement. For each of these agent-based models we derive a continuum partial differential equation which describes the evolution of the cells at a population level. We study the agreement between the agent-based models and the continuum, population-based models and compare and contrast a range of agent-based models (accounting for the different pulling mechanisms) with each other. We find generally good agreement between the agent-based models and the corresponding continuum models that worsens as the agent-based models become more complex. Interestingly, we observe that the partial differential equations that we derive differ significantly, depending on whether they were derived from on- or off-lattice agent-based models of pulling. This hints that it is important to employ the appropriate agent-based model when representing pulling cell-cell interactions.
Collapse
Affiliation(s)
- George Chappelle
- Department of Mathematics, Imperial College London SW7 2AZ, United Kingdom
| | - Christian A Yates
- Centre for Mathematical Biology, Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
3
|
Gavagnin E, Yates CA. Stochastic and Deterministic Modeling of Cell Migration. HANDBOOK OF STATISTICS 2018. [DOI: 10.1016/bs.host.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Binny RN, Plank MJ, James A. Spatial moment dynamics for collective cell movement incorporating a neighbour-dependent directional bias. J R Soc Interface 2016; 12:rsif.2015.0228. [PMID: 25904529 DOI: 10.1098/rsif.2015.0228] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The ability of cells to undergo collective movement plays a fundamental role in tissue repair, development and cancer. Interactions occurring at the level of individual cells may lead to the development of spatial structure which will affect the dynamics of migrating cells at a population level. Models that try to predict population-level behaviour often take a mean-field approach, which assumes that individuals interact with one another in proportion to their average density and ignores the presence of any small-scale spatial structure. In this work, we develop a lattice-free individual-based model (IBM) that uses random walk theory to model the stochastic interactions occurring at the scale of individual migrating cells. We incorporate a mechanism for local directional bias such that an individual's direction of movement is dependent on the degree of cell crowding in its neighbourhood. As an alternative to the mean-field approach, we also employ spatial moment theory to develop a population-level model which accounts for spatial structure and predicts how these individual-level interactions propagate to the scale of the whole population. The IBM is used to derive an equation for dynamics of the second spatial moment (the average density of pairs of cells) which incorporates the neighbour-dependent directional bias, and we solve this numerically for a spatially homogeneous case.
Collapse
Affiliation(s)
- Rachelle N Binny
- School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand Te Pūnaha Matatini, New Zealand
| | - Michael J Plank
- School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand Te Pūnaha Matatini, New Zealand
| | - Alex James
- School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand Te Pūnaha Matatini, New Zealand
| |
Collapse
|
5
|
Yates CA, Parker A, Baker RE. Incorporating pushing in exclusion-process models of cell migration. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052711. [PMID: 26066203 DOI: 10.1103/physreve.91.052711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Indexed: 06/04/2023]
Abstract
The macroscale movement behavior of a wide range of isolated migrating cells has been well characterized experimentally. Recently, attention has turned to understanding the behavior of cells in crowded environments. In such scenarios it is possible for cells to interact, inducing neighboring cells to move in order to make room for their own movements or progeny. Although the behavior of interacting cells has been modeled extensively through volume-exclusion processes, few models, thus far, have explicitly accounted for the ability of cells to actively displace each other in order to create space for themselves. In this work we consider both on- and off-lattice volume-exclusion position-jump processes in which cells are explicitly allowed to induce movements in their near neighbors in order to create space for themselves to move or proliferate into. We refer to this behavior as pushing. From these simple individual-level representations we derive continuum partial differential equations for the average occupancy of the domain. We find that, for limited amounts of pushing, comparison between the averaged individual-level simulations and the population-level model is nearly as good as in the scenario without pushing. Interestingly, we find that, in the on-lattice case, the diffusion coefficient of the population-level model is increased by pushing, whereas, for the particular off-lattice model that we investigate, the diffusion coefficient is reduced. We conclude, therefore, that it is important to consider carefully the appropriate individual-level model to use when representing complex cell-cell interactions such as pushing.
Collapse
Affiliation(s)
- Christian A Yates
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom†
| | - Andrew Parker
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford OX2 6GG, United Kingdom
| | - Ruth E Baker
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford OX2 6GG, United Kingdom
| |
Collapse
|
6
|
Johnston ST, Simpson MJ, McElwain DLS. How much information can be obtained from tracking the position of the leading edge in a scratch assay? J R Soc Interface 2015; 11:20140325. [PMID: 24850906 PMCID: PMC4208362 DOI: 10.1098/rsif.2014.0325] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Moving cell fronts are an essential feature of wound healing, development and disease. The rate at which a cell front moves is driven, in part, by the cell motility, quantified in terms of the cell diffusivity D, and the cell proliferation rate λ. Scratch assays are a commonly reported procedure used to investigate the motion of cell fronts where an initial cell monolayer is scratched, and the motion of the front is monitored over a short period of time, often less than 24 h. The simplest way of quantifying a scratch assay is to monitor the progression of the leading edge. Use of leading edge data is very convenient because, unlike other methods, it is non-destructive and does not require labelling, tracking or counting individual cells among the population. In this work, we study short-time leading edge data in a scratch assay using a discrete mathematical model and automated image analysis with the aim of investigating whether such data allow us to reliably identify D and λ. Using a naive calibration approach where we simply scan the relevant region of the (D, λ) parameter space, we show that there are many choices of D and λ for which our model produces indistinguishable short-time leading edge data. Therefore, without due care, it is impossible to estimate D and λ from this kind of data. To address this, we present a modified approach accounting for the fact that cell motility occurs over a much shorter time scale than proliferation. Using this information, we divide the duration of the experiment into two periods, and we estimate D using data from the first period, whereas we estimate λ using data from the second period. We confirm the accuracy of our approach using in silico data and a new set of in vitro data, which shows that our method recovers estimates of D and λ that are consistent with previously reported values except that that our approach is fast, inexpensive, non-destructive and avoids the need for cell labelling and cell counting.
Collapse
Affiliation(s)
- Stuart T Johnston
- Mathematical Sciences, Queensland University of Technology, Brisbane, Australia Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Matthew J Simpson
- Mathematical Sciences, Queensland University of Technology, Brisbane, Australia Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - D L Sean McElwain
- Mathematical Sciences, Queensland University of Technology, Brisbane, Australia Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
7
|
Dyson L, Baker RE. The importance of volume exclusion in modelling cellular migration. J Math Biol 2014; 71:691-711. [DOI: 10.1007/s00285-014-0829-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 07/02/2014] [Indexed: 10/24/2022]
|
8
|
Treloar KK, Simpson MJ, McElwain DLS, Baker RE. Are in vitro estimates of cell diffusivity and cell proliferation rate sensitive to assay geometry? J Theor Biol 2014; 356:71-84. [PMID: 24787651 DOI: 10.1016/j.jtbi.2014.04.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/06/2014] [Accepted: 04/18/2014] [Indexed: 11/25/2022]
Abstract
Cells respond to various biochemical and physical cues during wound-healing and tumour progression. in vitro assays used to study these processes are typically conducted in one particular geometry and it is unclear how the assay geometry affects the capacity of cell populations to spread, or whether the relevant mechanisms, such as cell motility and cell proliferation, are somehow sensitive to the geometry of the assay. In this work we use a circular barrier assay to characterise the spreading of cell populations in two different geometries. Assay 1 describes a tumour-like geometry where a cell population spreads outwards into an open space. Assay 2 describes a wound-like geometry where a cell population spreads inwards to close a void. We use a combination of discrete and continuum mathematical models and automated image processing methods to obtain independent estimates of the effective cell diffusivity, D, and the effective cell proliferation rate, λ. Using our parameterised mathematical model we confirm that our estimates of D and λ accurately predict the time-evolution of the location of the leading edge and the cell density profiles for both assay 1 and assay 2. Our work suggests that the effective cell diffusivity is up to 50% lower for assay 2 compared to assay 1, whereas the effective cell proliferation rate is up to 30% lower for assay 2 compared to assay 1.
Collapse
Affiliation(s)
- Katrina K Treloar
- Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia; Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, QUT, Brisbane, Australia
| | - Matthew J Simpson
- Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia; Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, QUT, Brisbane, Australia.
| | - D L Sean McElwain
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, QUT, Brisbane, Australia
| | - Ruth E Baker
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, United Kingdom
| |
Collapse
|
9
|
Johnston ST, Simpson MJ, Plank MJ. Lattice-free descriptions of collective motion with crowding and adhesion. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062720. [PMID: 24483499 DOI: 10.1103/physreve.88.062720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Indexed: 06/03/2023]
Abstract
Cell-to-cell adhesion is an important aspect of malignant spreading that is often observed in images from the experimental cell biology literature. Since cell-to-cell adhesion plays an important role in controlling the movement of individual malignant cells, it is likely that cell-to-cell adhesion also influences the spatial spreading of populations of such cells. Therefore, it is important for us to develop biologically realistic simulation tools that can mimic the key features of such collective spreading processes to improve our understanding of how cell-to-cell adhesion influences the spreading of cell populations. Previous models of collective cell spreading with adhesion have used lattice-based random walk frameworks which may lead to unrealistic results, since the agents in the random walk simulations always move across an artificial underlying lattice structure. This is particularly problematic in high-density regions where it is clear that agents in the random walk align along the underlying lattice, whereas no such regular alignment is ever observed experimentally. To address these limitations, we present a lattice-free model of collective cell migration that explicitly incorporates crowding and adhesion. We derive a partial differential equation description of the discrete process and show that averaged simulation results compare very well with numerical solutions of the partial differential equation.
Collapse
Affiliation(s)
- Stuart T Johnston
- School of Mathematical Sciences, Queensland University of Technology, Brisbane 4001, Australia and Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane 4001, Australia
| | - Matthew J Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane 4001, Australia and Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane 4001, Australia
| | - Michael J Plank
- Department of Mathematics and Statistics, University of Canterbury, Christchurch 8140, New Zealand
| |
Collapse
|