1
|
Vishwanath K, Choi H, Gupta M, Zhou R, Sorace AG, Yankeelov TE, Lima EABF. Modeling tumor dynamics and predicting response to chemo-, targeted-, and immune-therapies in a murine model of pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.631015. [PMID: 39803494 PMCID: PMC11722293 DOI: 10.1101/2025.01.03.631015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
We seek to establish a parsimonious mathematical framework for understanding the interaction and dynamics of the response of pancreatic cancer to the NGC triple chemotherapy regimen (mNab-paclitaxel, gemcitabine, and cisplatin), stromal-targeting drugs (calcipotriol and losartan), and an immune checkpoint inhibitor (anti-PD-L1). We developed a set of ordinary differential equations describing changes in tumor size (growth and regression) under the influence of five cocktails of treatments. Model calibration relies on three tumor volume measurements obtained over a 14-day period in a genetically engineered pancreatic cancer model (KrasLSLG12D-Trp53LSLR172H-Pdx1-Cre). Our model reproduces tumor growth in the control and treatment scenarios with an average concordance correlation coefficient (CCC) of 0.99±0.01. We conduct leave-one-out predictions (average CCC=0.74±0.06), mouse-specific predictions (average CCC=0.75±0.02), and hybrid, group-informed, mouse-specific predictions (average CCC=0.85±0.04). The developed mathematical model demonstrates high accuracy in fitting the experimental tumor data and a robust ability to predict tumor response to treatment. This approach has important implications for optimizing combination NGC treatment strategies.
Collapse
Affiliation(s)
- Krithik Vishwanath
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas, 78712
- Department of Mathematics, The University of Texas at Austin, Austin, Texas, 78712
| | - Hoon Choi
- Department of Radiology, Institute of Regenerative Medicine, Institute of Translational Medicine and Therapeutics, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Mamta Gupta
- Department of Radiology, Institute of Regenerative Medicine, Institute of Translational Medicine and Therapeutics, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Rong Zhou
- Department of Radiology, Institute of Regenerative Medicine, Institute of Translational Medicine and Therapeutics, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Anna G Sorace
- Department of Radiology, Department of Biomedical Engineering The University of Alabama, Birmingham, Birmingham, Alabama, 35223
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, Texas, 78712
- Department of Oncology, The University of Texas at Austin, Austin, Texas, 78712
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, 78712
- Livestrong Cancer Institutes The University of Texas at Austin, Austin, Texas, 78712
- Department of Imaging Physics The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Ernesto A B F Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, 78712
- Texas Advanced Computing Center Austin, Texas, 78758
| |
Collapse
|
2
|
Vithanage GVRK, Wei HC, Jang SRJ. Bistability in a model of tumor-immune system interactions with an oncolytic viral therapy. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:1559-1587. [PMID: 35135217 DOI: 10.3934/mbe.2022072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A mathematical model of tumor-immune system interactions with an oncolytic virus therapy for which the immune system plays a twofold role against cancer cells is derived. The immune cells can kill cancer cells but can also eliminate viruses from the therapy. In addition, immune cells can either be stimulated to proliferate or be impaired to reduce their growth by tumor cells. It is shown that if the tumor killing rate by immune cells is above a critical value, the tumor can be eradicated for all sizes, where the critical killing rate depends on whether the immune system is immunosuppressive or proliferative. For a reduced tumor killing rate with an immunosuppressive immune system, that bistability exists in a large parameter space follows from our numerical bifurcation study. Depending on the tumor size, the tumor can either be eradicated or be reduced to a size less than its carrying capacity. However, reducing the viral killing rate by immune cells always increases the effectiveness of the viral therapy. This reduction may be achieved by manipulating certain genes of viruses via genetic engineering or by chemical modification of viral coat proteins to avoid detection by the immune cells.
Collapse
Affiliation(s)
- G V R K Vithanage
- Department of Mathematics and Statistics, Texas Tech University, Texas 79409, USA
| | - Hsiu-Chuan Wei
- Department of Applied Mathematics, Feng Chia University, Taichung 40724, Taiwan
| | - Sophia R-J Jang
- Department of Mathematics and Statistics, Texas Tech University, Texas 79409, USA
| |
Collapse
|
3
|
YILDIZ TUĞBAAKMAN, KÖSE EMEK, ELLIOTT SAMANTHAL. MATHEMATICAL MODELING OF PANCREATIC CANCER TREATMENT WITH CANCER STEM CELLS. J BIOL SYST 2021. [DOI: 10.1142/s0218339021500182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Of all cancers, pancreatic cancer has a significantly low rate of survival, mostly due to lack of early screening. Thus, once detected, pancreatic cancer is usually in later stages, reducing the likelihood of full recovery. The most common treatment strategy is chemotherapy, although several immunotherapeutic drugs show promising results in extending the patient’s lifespan. In this paper, we provide a validated mathematical model for the pancreatic cancer after fitting the parameter values, such as tumor growth rate, inverse carrying capacity, activation and decay rate of pancreatic stellate cells, with the use of the experimental data presented by Cioffi et al. cioffi2015inhibition For treatments with the chemotherapeutic drugs, Abraxane and Gemcitabine, and the immunotherapeutic drug, Anti-CD47, we modified the model accurately and compared the simulation results with the experimental data not only to model pancreatic cancer treatment correctly but also to move forward with other drug trials. Then, we include the cancer stem cells, which are known to initiate tumors and cause a relapse post-chemotherapy, per cancer stem cell hypothesis so that cancer progression can be assessed based on this phenomenon. In addition, we investigate optimal drug protocols. We find out that the most effective treatment is dual therapy due to extending survival time when compared to other drugs. Moreover, this study reveals that drug dose is more effectual than frequency of drug injection on account of different treatment scheduling with the same dose over a week. The model could be a starting point to investigate pancreatic cancer progression based on cancer stem cell hypothesis and shed light on novel drug discoveries.
Collapse
Affiliation(s)
- TUĞBA AKMAN YILDIZ
- Department of Computer Engineering, University of Turkish Aeronautical Association, 06790 Ankara, Turkey
| | - EMEK KÖSE
- Department of Mathematics and Computer Science, St. Mary’s College of Maryland, St. Mary’s City, MD 20619, USA
| | - SAMANTHA L. ELLIOTT
- Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD 20619, USA
| |
Collapse
|
4
|
Improving cancer treatments via dynamical biophysical models. Phys Life Rev 2021; 39:1-48. [PMID: 34688561 DOI: 10.1016/j.plrev.2021.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022]
Abstract
Despite significant advances in oncological research, cancer nowadays remains one of the main causes of mortality and morbidity worldwide. New treatment techniques, as a rule, have limited efficacy, target only a narrow range of oncological diseases, and have limited availability to the general public due their high cost. An important goal in oncology is thus the modification of the types of antitumor therapy and their combinations, that are already introduced into clinical practice, with the goal of increasing the overall treatment efficacy. One option to achieve this goal is optimization of the schedules of drugs administration or performing other medical actions. Several factors complicate such tasks: the adverse effects of treatments on healthy cell populations, which must be kept tolerable; the emergence of drug resistance due to the intrinsic plasticity of heterogeneous cancer cell populations; the interplay between different types of therapies administered simultaneously. Mathematical modeling, in which a tumor and its microenvironment are considered as a single complex system, can address this complexity and can indicate potentially effective protocols, that would require experimental verification. In this review, we consider classical methods, current trends and future prospects in the field of mathematical modeling of tumor growth and treatment. In particular, methods of treatment optimization are discussed with several examples of specific problems related to different types of treatment.
Collapse
|