1
|
Zeng Q, Liu Z, Niu T, He C, Qu Y, Qian Z. Application of nanotechnology in CAR-T-cell immunotherapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
2
|
Theranostic Radiolabeled Nanomaterials for Molecular Imaging and potential Immunomodulation Effects. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Oey O, Sunjaya AP. Applications of nanoparticles in cardiovascular imaging and therapeutics. Asian Cardiovasc Thorac Ann 2022; 30:653-660. [PMID: 35259973 DOI: 10.1177/02184923221087003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiovascular disease (CVD) is a major health problem afflicting millions of people worldwide. Early detection methods are lacking, and current therapies have significant limitations. Recently, there has been a surge in the number of studies investigating the utilisation of nanoparticles in cardiovascular imaging and therapy. With respect to cardiovascular imaging, previous studies have looked at the role of nanoparticles in thrombus formation, angiogenesis, blood pool and stem cell imaging. Whereas, with respect to therapy, nanoparticles have been studied for delivering drugs and nucleic acids, specifically to the site of interest; in the context of cardiac regeneration; and its potential in refining current therapy guidelines for CVD management. This review aims to extensively summarise the studies that have been conducted investigating the role of nanoparticles in different aspects of cardiovascular imaging and therapy.
Collapse
Affiliation(s)
- Oliver Oey
- 94920St John of God Midland Hospital, Perth, Australia.,85075Faculty of Medicine, University of Western Australia, Perth, Australia
| | - Anthony Paulo Sunjaya
- 98994Faculty of Medicine, University of New South Wales, Sydney, Australia.,98994The George Institute for Global Health, Sydney, Australia
| |
Collapse
|
4
|
Signore A, Tetti S, Trapasso F, Lanzolla T, Lauri C. Radiolabeling of mixed leukocytes or pure granulocytes and their quality controls. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
5
|
Varani M, Galli F, Bentivoglio V, Signore A. Particles and nanoparticles in nuclear medicine: Basic principles and instrumentation. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00079-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
6
|
Feasibility of Monitoring Tumor Response by Tracking Nanoparticle-Labelled T Cells Using X-ray Fluorescence Imaging-A Numerical Study. Int J Mol Sci 2021; 22:ijms22168736. [PMID: 34445443 PMCID: PMC8395984 DOI: 10.3390/ijms22168736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy has been a breakthrough in cancer treatment, yet only a subgroup of patients responds to these novel drugs. Parameters such as cytotoxic T-cell infiltration into the tumor have been proposed for the early evaluation and prediction of therapeutic response, demanded for non-invasive, sensitive and longitudinal imaging. We have evaluated the feasibility of X-ray fluorescence imaging (XFI) to track immune cells and thus monitor the immune response. For that, we have performed Monte Carlo simulations using a mouse voxel model. Spherical targets, enriched with gold or palladium fluorescence agents, were positioned within the model and imaged using a monochromatic photon beam of 53 or 85 keV. Based on our simulation results, XFI may detect as few as 730 to 2400 T cells labelled with 195 pg gold each when imaging subcutaneous tumors in mice, with a spatial resolution of 1 mm. However, the detection threshold is influenced by the depth of the tumor as surrounding tissue increases scattering and absorption, especially when utilizing palladium imaging agents with low-energy characteristic fluorescence photons. Further evaluation and conduction of in vivo animal experiments will be required to validate and advance these promising results.
Collapse
|
7
|
Galli F, Varani M, Lauri C, Silveri GG, Onofrio L, Signore A. Immune cell labelling and tracking: implications for adoptive cell transfer therapies. EJNMMI Radiopharm Chem 2021; 6:7. [PMID: 33537909 PMCID: PMC7859135 DOI: 10.1186/s41181-020-00116-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background The understanding of the role of different immune cell subsets that infiltrate tumors can help researchers in developing new targeted immunotherapies to reactivate or reprogram them against cancer. In addition to conventional drugs, new cell-based therapies, like adoptive cell transfer, proved to be successful in humans. Indeed, after the approval of anti-CD19 CAR-T cell therapy, researchers are trying to extend this approach to other cancer or cell types. Main body This review focuses on the different approaches to non-invasively monitor the biodistribution, trafficking and fate of immune therapeutic cells, evaluating their efficacy at preclinical and clinical stages. PubMed and Scopus databases were searched for published articles on the imaging of cell tracking in humans and preclinical models. Conclusion Labelling specific immune cell subtypes with specific radiopharmaceuticals, contrast agents or optical probes can elucidate new biological mechanisms or predict therapeutic outcome of adoptive cell transfer therapies. To date, no technique is considered the gold standard to image immune cells in adoptive cell transfer therapies.
Collapse
Affiliation(s)
- Filippo Galli
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy.
| | - Michela Varani
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy
| | - Chiara Lauri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy
| | - Guido Gentiloni Silveri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy
| | - Livia Onofrio
- Medical Oncology B, Department of Radiology and Pathology, "Sapienza" University of Rome, Rome, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
8
|
Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021; 50:3355-3423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanomaterials offer unique physical, chemical and biological properties of interest for medical imaging and therapy. Over the last two decades, there has been an increasing effort to translate nanomaterial-based medicinal products (so-called nanomedicines) into clinical practice and, although multiple nanoparticle-based formulations are clinically available, there is still a disparity between the number of pre-clinical products and those that reach clinical approval. To facilitate the efficient clinical translation of nanomedicinal-drugs, it is important to study their whole-body biodistribution and pharmacokinetics from the early stages of their development. Integrating this knowledge with that of their therapeutic profile and/or toxicity should provide a powerful combination to efficiently inform nanomedicine trials and allow early selection of the most promising candidates. In this context, radiolabelling nanomaterials allows whole-body and non-invasive in vivo tracking by the sensitive clinical imaging techniques positron emission tomography (PET), and single photon emission computed tomography (SPECT). Furthermore, certain radionuclides with specific nuclear emissions can elicit therapeutic effects by themselves, leading to radionuclide-based therapy. To ensure robust information during the development of nanomaterials for PET/SPECT imaging and/or radionuclide therapy, selection of the most appropriate radiolabelling method and knowledge of its limitations are critical. Different radiolabelling strategies are available depending on the type of material, the radionuclide and/or the final application. In this review we describe the different radiolabelling strategies currently available, with a critical vision over their advantages and disadvantages. The final aim is to review the most relevant and up-to-date knowledge available in this field, and support the efficient clinical translation of future nanomedicinal products for in vivo imaging and/or therapy.
Collapse
Affiliation(s)
- Juan Pellico
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK.
| | | | | |
Collapse
|
9
|
Goel S, England CG, Chen F, Cai W. Positron emission tomography and nanotechnology: A dynamic duo for cancer theranostics. Adv Drug Deliv Rev 2017; 113:157-176. [PMID: 27521055 PMCID: PMC5299094 DOI: 10.1016/j.addr.2016.08.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 12/18/2022]
Abstract
Development of novel imaging probes for cancer diagnosis is critical for early disease detection and management. The past two decades have witnessed a surge in the development and evolution of radiolabeled nanoparticles as a new frontier in personalized cancer nanomedicine. The dynamic synergism of positron emission tomography (PET) and nanotechnology combines the sensitivity and quantitative nature of PET with the multifunctionality and tunability of nanomaterials, which can help overcome certain key challenges in the field. In this review, we discuss the recent advances in radionanomedicine, exemplifying the ability to tailor the physicochemical properties of nanomaterials to achieve optimal in vivo pharmacokinetics and targeted molecular imaging in living subjects. Innovations in development of facile and robust radiolabeling strategies and biomedical applications of such radionanoprobes in cancer theranostics are highlighted. Imminent issues in clinical translation of radiolabeled nanomaterials are also discussed, with emphasis on multidisciplinary efforts needed to quickly move these promising agents from bench to bedside.
Collapse
Affiliation(s)
- Shreya Goel
- Materials Science Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Christopher G England
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Feng Chen
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Weibo Cai
- Materials Science Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA.
| |
Collapse
|
10
|
Li A, Wu Y, Tang F, Li W, Feng X, Yao Z. In Vivo Magnetic Resonance Imaging of CD8+ T Lymphocytes Recruiting to Glioblastoma in Mice. Cancer Biother Radiopharm 2017; 31:317-323. [PMID: 27831762 DOI: 10.1089/cbr.2016.2061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Noninvasive in vivo tracking of adopted immune cells would help improve immunotherapy on glioblastoma. In this study, the authors tried to track adoptive CD8+ T lymphocytes in an in situ GL261 glioblastoma mouse model with magnetic resonance imaging (MRI). CD8+ T lymphocytes from spleen of preimmunized GL261 glioblastoma mice were labeled with superparamagnetic iron oxide, with polylysine as transfection agent. From Prussian blue staining, the labeling efficiency was 0.77% ± 0.06%, without altering cell viability and function. From anti-CD8, and anti-dextran staining, superparamagnetic iron oxide could be seen in the cytoplasm. In vitro imaging of agar gel mixtures with different concentrations of labeled CD8+ T lymphocytes was done with a 3.0T MR T2*WI sequence. Higher cell concentrations showed lower signal values. Twenty-four hours after tail vein injection of labeled and unlabeled CD8+ T lymphocytes, imaging of GL261 mice brain showed black spots at the periphery of the tumor in the labeled group only. Brain tumor pathology further verified infiltration of labeled CD8+ T lymphocytes in the tumor. Thus, preimmunized CD8+ T lymphocytes could be efficiently labeled with superparamagnetic iron oxide and tracked both in vitro and in vivo with 3.0T MRI.
Collapse
Affiliation(s)
- Anning Li
- 1 Department of Radiology, Qilu Hospital of Shandong University , Jinan, People's Republic of China
| | - Yue Wu
- 2 Department of Radiology, Fudan University , Shanghai, People's Republic of China
| | - Feng Tang
- 3 Department of Radiology, Pathology, Huashan Hospital, Fudan University , Shanghai, People's Republic of China
| | - Wei Li
- 3 Department of Radiology, Pathology, Huashan Hospital, Fudan University , Shanghai, People's Republic of China
| | - Xiaoyuan Feng
- 2 Department of Radiology, Fudan University , Shanghai, People's Republic of China
| | - Zhenwei Yao
- 2 Department of Radiology, Fudan University , Shanghai, People's Republic of China
| |
Collapse
|