1
|
Tang J, Dong Z, Sheng J, Yang P, Zhao W, Xue J, Li Q, Lv L, Lv X. Advances in the relationship between temporal muscle thickness and prognosis of patients with glioblastoma: a narrative review. Front Oncol 2023; 13:1251662. [PMID: 37771443 PMCID: PMC10525700 DOI: 10.3389/fonc.2023.1251662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
The most dangerous variety of glioma, glioblastoma, has a high incidence and fatality rate. The prognosis for patients is still bleak despite numerous improvements in treatment approaches. We urgently need to develop clinical parameters that can evaluate patients' conditions and predict their prognosis. Various parameters are available to assess the patient's preoperative performance status and degree of frailty, but most of these parameters are subjective and therefore subject to interobserver variability. Sarcopenia can be used as an objective metric to measure a patient's physical status because studies have shown that it is linked to a bad prognosis in those with cancers. For the purpose of identifying sarcopenia, temporal muscle thickness has demonstrated to be a reliable alternative for a marker of skeletal muscle content. As a result, patients with glioblastoma may use temporal muscle thickness as a potential marker to correlate with the course and fate of their disease. This narrative review highlights and defines the viability of using temporal muscle thickness as an independent predictor of survival in glioblastoma patients, and it evaluates recent research findings on the association between temporal muscle thickness and prognosis of glioblastoma patients.
Collapse
Affiliation(s)
- Jinhai Tang
- Department of Radiation Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhenghao Dong
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junxiu Sheng
- Department of Radiation Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ping Yang
- Department of Radiation Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Wanying Zhao
- Department of Radiation Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Juan Xue
- Department of Radiation Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qizheng Li
- Department of Radiation Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Li Lv
- Department of Pathology, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiupeng Lv
- Department of Radiation Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Beylerli O, Encarnacion Ramirez MDJ, Shumadalova A, Ilyasova T, Zemlyanskiy M, Beilerli A, Montemurro N. Cell-Free miRNAs as Non-Invasive Biomarkers in Brain Tumors. Diagnostics (Basel) 2023; 13:2888. [PMID: 37761255 PMCID: PMC10529040 DOI: 10.3390/diagnostics13182888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Diagnosing brain tumors, especially malignant variants, such as glioblastoma, medulloblastoma, or brain metastasis, presents a considerable obstacle, while current treatment methods often yield unsatisfactory results. The monitoring of individuals with brain neoplasms becomes burdensome due to the intricate tumor nature and associated risks of tissue biopsies, compounded by the restricted accuracy and sensitivity of presently available non-invasive diagnostic techniques. The uncertainties surrounding diagnosis and the tumor's reaction to treatment can lead to delays in critical determinations that profoundly influence the prognosis of the disease. Consequently, there exists a pressing necessity to formulate and validate dependable, minimally invasive biomarkers that can effectively diagnose and predict brain tumors. Cell-free microRNAs (miRNAs), which remain stable and detectable in human bodily fluids, such as blood and cerebrospinal fluid (CSF), have emerged as potential indicators for a range of ailments, brain tumors included. Numerous investigations have showcased the viability of profiling cell-free miRNA expression in both CSF and blood samples obtained from patients with brain tumors. Distinct miRNAs demonstrate varying expression patterns within CSF and blood. While cell-free microRNAs in the blood exhibit potential in diagnosing, prognosticating, and monitoring treatment across diverse tumor types, they fall short in effectively diagnosing brain tumors. Conversely, the cell-free miRNA profile within CSF demonstrates high potential in delivering precise and specific evaluations of brain tumors.
Collapse
Affiliation(s)
- Ozal Beylerli
- Bashkir State Medical University, 450008 Ufa, Russia
| | | | | | | | - Mikhail Zemlyanskiy
- Department of Neurosurgery, Podolsk Regional Hospital, 141110 Moscow, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, 625000 Tyumen, Russia
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
3
|
Franco D, Granata V, Fusco R, Grassi R, Nardone V, Lombardi L, Cappabianca S, Conforti R, Briganti F, Grassi R, Caranci F. Artificial intelligence and radiation effects on brain tissue in glioblastoma patient: preliminary data using a quantitative tool. LA RADIOLOGIA MEDICA 2023:10.1007/s11547-023-01655-0. [PMID: 37289266 DOI: 10.1007/s11547-023-01655-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE The quantification of radiotherapy (RT)-induced functional and morphological brain alterations is fundamental to guide therapeutic decisions in patients with brain tumors. The magnetic resonance imaging (MRI) allows to define structural RT-brain changes, but it is unable to evaluate early injuries and to objectively quantify the volume tissue loss. Artificial intelligence (AI) tools extract accurate measurements that permit an objective brain different region quantification. In this study, we assessed the consistency between an AI software (Quibim Precision® 2.9) and qualitative neruroradiologist evaluation, and its ability to quantify the brain tissue changes during RT treatment in patients with glioblastoma multiforme (GBM). METHODS GBM patients treated with RT and subjected to MRI assessment were enrolled. Each patient, pre- and post-RT, undergoes to a qualitative evaluation with global cerebral atrophy (GCA) and medial temporal lobe atrophy (MTA) and a quantitative assessment with Quibim Brain screening and hippocampal atrophy and asymmetry modules on 19 extracted brain structures features. RESULTS A statistically significant strong negative association between the percentage value of the left temporal lobe and the GCA score and the left temporal lobe and the MTA score was found, while a moderate negative association between the percentage value of the right hippocampus and the GCA score and the right hippocampus and the MTA score was assessed. A statistically significant strong positive association between the CSF percentage value and the GCA score and a moderate positive association between the CSF percentage value and the MTA score was found. Finally, quantitative feature values showed that the percentage value of the cerebro-spinal fluid (CSF) statistically differences between pre- and post-RT. CONCLUSIONS AI tools can support a correct evaluation of RT-induced brain injuries, allowing an objective and earlier assessment of the brain tissue modifications.
Collapse
Affiliation(s)
- Donatella Franco
- Division of Radiology, Department of Precision Medicine, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy.
| | - Roberta Fusco
- Research & Development and Medical Oncology Division, Igea SpA, Naples, Italy
| | - Roberta Grassi
- Division of Radiology, Department of Precision Medicine, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122, Milan, Italy
| | - Valerio Nardone
- Division of Radiology, Department of Precision Medicine, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Laura Lombardi
- Division of Radiology, Department of Precision Medicine, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Salvatore Cappabianca
- Division of Radiology, Department of Precision Medicine, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Renata Conforti
- Division of Radiology, Department of Precision Medicine, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Francesco Briganti
- Advanced Biomedical Sciences Department, Federico II University, Naples, Italy
| | - Roberto Grassi
- Division of Radiology, Department of Precision Medicine, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Ferdinando Caranci
- Division of Radiology, Department of Precision Medicine, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
4
|
Yang YW, Zhou YW, Xia X, Jia SL, Zhao YL, Zhou LX, Cao Y, Ge ML. Prognostic value of temporal muscle thickness, a novel radiographic marker of sarcopenia, in patients with brain tumor: A systematic review and meta-analysis. Nutrition 2023; 112:112077. [PMID: 37236042 DOI: 10.1016/j.nut.2023.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Sarcopenia has been identified as a prognostic factor among certain types of cancer. However, it is unclear whether there is prognostic value of temporalis muscle thickness (TMT), a potential surrogate for sarcopenia, in adults patients with brain tumors. Therefore, we searched the Medline, Embase, and PubMed to systematically review and meta-analyze the relationship between TMT and overall survival, progression-free survival, and complications in patients with brain tumors and the hazard ratio (HR) or odds ratios (OR), and 95% confidence interval (CI) were evaluated. The quality in prognostic studies (QUIPS) instrument was employed to evaluate study quality. Nineteen studies involving 4570 patients with brain tumors were included for qualitative and quantitative analysis. Meta-analysis revealed thinner TMT was associated with poor overall survival (HR, 1.72; 95% CI, 1.45-2.04; P < 0.01) in patients with brain tumors. Sub-analyses showed that the association existed for both primary brain tumors (HR, 2.02; 95% CI, 1.55-2.63) and brain metastases (HR, 1.39; 95% CI, 1.30-1.49). Moreover, thinner TMT also was the independent predictor of progression-free survival in patients with primary brain tumors (HR, 2.88; 95% CI, 1.85-4.46; P < 0.01). Therefore, to improve clinical decision making it is important to integrate TMT assessment into routine clinical settings in patients with brain tumors.
Collapse
Affiliation(s)
- Yan-Wu Yang
- Emergency Department, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi-Wu Zhou
- Emergency Department, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Xia
- Center of Gerontology and Geriatrics (National Clinical Research Center for Geriatrics), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shu-Li Jia
- Center of Gerontology and Geriatrics (National Clinical Research Center for Geriatrics), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun-Li Zhao
- Center of Gerontology and Geriatrics (National Clinical Research Center for Geriatrics), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li-Xing Zhou
- Center of Gerontology and Geriatrics (National Clinical Research Center for Geriatrics), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Cao
- Emergency Department, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mei-Ling Ge
- Center of Gerontology and Geriatrics (National Clinical Research Center for Geriatrics), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Montemurro N, Pahwa B, Tayal A, Shukla A, De Jesus Encarnacion M, Ramirez I, Nurmukhametov R, Chavda V, De Carlo A. Macrophages in Recurrent Glioblastoma as a Prognostic Factor in the Synergistic System of the Tumor Microenvironment. Neurol Int 2023; 15:595-608. [PMID: 37218976 DOI: 10.3390/neurolint15020037] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Glioblastoma (GBM) is a common and highly malignant primary tumor of the central nervous system in adults. Ever more recent papers are focusing on understanding the role of the tumor microenvironment (TME) in affecting tumorigenesis and the subsequent prognosis. We assessed the impact of macrophages in the TME on the prognosis in patients with recurrent GBM. A PubMed, MEDLINE and Scopus review was conducted to identify all studies dealing with macrophages in the GBM microenvironment from January 2016 to December 2022. Glioma-associated macrophages (GAMs) act critically in enhancing tumor progression and can alter drug resistance, promoting resistance to radiotherapy and establishing an immunosuppressive environment. M1 macrophages are characterized by increased secretion of proinflammatory cytokines, such as IL-1ß, tumor necrosis factor (TNF), IL-27, matrix metalloproteinase (MMPs), CCL2, and VEGF (vascular endothelial growth factor), IGF1, that can lead to the destruction of the tissue. In contrast, M2 is supposed to participate in immunosuppression and tumor progression, which is formed after being exposed to the macrophage M-CSF, IL-10, IL-35 and the transforming growth factor-ß (TGF-β). Because there is currently no standard of care in recurrent GBM, novel identified targeted therapies based on the complex signaling and interactions between the glioma stem cells (GSCs) and the TME, especially resident microglia and bone-marrow-derived macrophages, may be helpful in improving the overall survival of these patients in the near future.
Collapse
Affiliation(s)
- Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| | - Bhavya Pahwa
- University College of Medical Sciences and GTB Hospital, New Delhi 110095, India
| | - Anish Tayal
- University College of Medical Sciences and GTB Hospital, New Delhi 110095, India
| | - Anushruti Shukla
- University College of Medical Sciences and GTB Hospital, New Delhi 110095, India
| | | | - Issael Ramirez
- Royal Melbourne Hospital, Melbourne, VIC 3000, Australia
| | - Renat Nurmukhametov
- Department of Spinal Surgery, Central Clinical Hospital of the Russian Academy of Sciences, 121359 Moscow, Russia
| | - Vishal Chavda
- Department of Pathology, Stanford of School of Medicine, Stanford University Medical Centre, Palo Alto, CA 94305, USA
| | - Antonella De Carlo
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
6
|
Zhu C, Zhao Y, Zheng W. CDC14B is a favorable biomarker for recurrence and prognosis of GBM. Clin Neurol Neurosurg 2023; 227:107665. [PMID: 36898299 DOI: 10.1016/j.clineuro.2023.107665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and lethal primary brain tumor in adults. The treatment options of GBM are quite few and the prognosis of GBM is very dismal. Identifying the effective and prognostic biomarker is important for molecular classification and individual treatment of patients. CDC14 is a conserved dual specificity phosphatase functioning mainly in mitosis and DNA respiration. The expression and function of CDC14 family in tumor progression is still elusive. MATERIALS AND METHODS In our study, we established a retrospective GBM cohort consisting of 135 patients who underwent the surgery and received standard treatment therapy. We compared the expression of CDC14A and CDC14B in GBM and tumor-adjacent tissues by retrieving data from TCGA and qPCR. With immunohistochemistry (IHC), we detected the expression of CDC14B in the cohort, and analyzed the correlation between CDC14B and clinicopathological factors by chi-square test. The significance of CDC14B on GBM recurrence and prognosis was assessed by univariate and multivariate analyses. RESULTS CDC14B, but not CDC14A, had a higher expression in GBM tissues than in tumor-adjacent tissues. High CDC14B was correlated with high progression-free survival (PFS) rate and overall survival (OS) rate of GBM. In the Cox-regression model, CDC14B was an independent and favorable biomarker indicating low risk of recurrence and GBM-related death. CONCLUSIONS High CDC14B is correlated with high GBM PFS and OS rate, and CDC14B is an independent biomarker of GBM, indicating low recurrence and favorable prognosis. Our study reveals a new biomarker of GBM which could indicate the recurrence and prognosis of GBM. This may help stratify the high-risk patients and modify the prognostic assessment based on molecular features.
Collapse
Affiliation(s)
- Chao Zhu
- Department of Neurosurgery, the Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China
| | - Yang Zhao
- Department of Cardiology, the Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China
| | - Wei Zheng
- Department of Neurosurgery, the Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China.
| |
Collapse
|
7
|
Gabelloni M, Faggioni L, Fusco R, Simonetti I, De Muzio F, Giacobbe G, Borgheresi A, Bruno F, Cozzi D, Grassi F, Scaglione M, Giovagnoni A, Barile A, Miele V, Gandolfo N, Granata V. Radiomics in Lung Metastases: A Systematic Review. J Pers Med 2023; 13:jpm13020225. [PMID: 36836460 PMCID: PMC9967749 DOI: 10.3390/jpm13020225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Due to the rich vascularization and lymphatic drainage of the pulmonary tissue, lung metastases (LM) are not uncommon in patients with cancer. Radiomics is an active research field aimed at the extraction of quantitative data from diagnostic images, which can serve as useful imaging biomarkers for a more effective, personalized patient care. Our purpose is to illustrate the current applications, strengths and weaknesses of radiomics for lesion characterization, treatment planning and prognostic assessment in patients with LM, based on a systematic review of the literature.
Collapse
Affiliation(s)
- Michela Gabelloni
- Nuclear Medicine Unit, Department of Translational Research, University of Pisa, 56126 Pisa, Italy
| | - Lorenzo Faggioni
- Academic Radiology, Department of Translational Research, University of Pisa, 56126 Pisa, Italy
- Correspondence: ; Tel.: +39-050-992524
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Igino Simonetti
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100 Campobasso, Italy
| | - Giuliana Giacobbe
- General and Emergency Radiology Department, “Antonio Cardarelli” Hospital, 80131 Naples, Italy
| | - Alessandra Borgheresi
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, 60126 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Federico Bruno
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L’Aquila, Italy
- Italian Society of Medical and Interventional Radiology, SIRM Foundation, 20122 Milan, Italy
| | - Diletta Cozzi
- Italian Society of Medical and Interventional Radiology, SIRM Foundation, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Francesca Grassi
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mariano Scaglione
- Department of Surgery, Medicine and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Andrea Giovagnoni
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, 60126 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology, SIRM Foundation, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, 16149 Genoa, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| |
Collapse
|
8
|
Trifănescu OG, Trifănescu RA, Mitrică R, Mitrea D, Ciornei A, Georgescu M, Butnariu I, Galeș LN, Șerbănescu L, Anghel RM, Păun MA. Upstaging and Downstaging in Gliomas-Clinical Implications for the Fifth Edition of the World Health Organization Classification of Tumors of the Central Nervous System. Diagnostics (Basel) 2023; 13:diagnostics13020197. [PMID: 36673007 PMCID: PMC9858599 DOI: 10.3390/diagnostics13020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
In 2021, the 5th edition of the WHO Classification of Tumors of the Central Nervous System (WHO-CNS5) was published as the sixth volume of the international standard for brain and spinal cord tumor classification. The most remarkable practical change in the current classification involves grading gliomas according to molecular characterization. IDH mutant (10%) and IDH wild-type tumors (90%) are two different entities that possess unique biological features and various clinical outcomes regarding treatment response and overall survival. This article presents two comparative cases that highlight the clinical importance of these new classification standards. The first clinical case aimed to provide a comprehensive argument for determining the IDH status in tumors initially appearing as low-grade astrocytoma upon histologic examination, thus underlining the importance of the WHO-CNS5. The second case showed the implications of the histologic overdiagnosis of glioblastoma using the previous classification system with a treatment span of 7 years that proceeded through full-dose re-irradiation up to metronomic therapy. The new WHO-CNS5 classification significantly impacted complex neurooncological cases, thus changing the initial approach to a more precise therapeutic management.
Collapse
Affiliation(s)
- Oana Gabriela Trifănescu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Radiotherapy II, “Prof. Dr. Al. Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Raluca Alexandra Trifănescu
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “C. I. Parhon” Bucharest Institute of Endocrinology, 011863 Bucharest, Romania
| | - Radu Mitrică
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Radiotherapy II, “Prof. Dr. Al. Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
- Correspondence: (R.M.); (D.M.); Tel.: +40-741964311 (R.M.); +40-723226233 (D.M.)
| | - Dan Mitrea
- Radiotherapy II, “Prof. Dr. Al. Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
- Neuroaxis Neurology Clinic, 011302 Bucharest, Romania
- Correspondence: (R.M.); (D.M.); Tel.: +40-741964311 (R.M.); +40-723226233 (D.M.)
| | - Ana Ciornei
- Radiotherapy II, “Prof. Dr. Al. Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Mihai Georgescu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Radiotherapy II, “Prof. Dr. Al. Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Ioana Butnariu
- Department of Neurology, National Institute of Neurology and Neurovascular Diseases, 041914 Bucharest, Romania
| | - Laurenția Nicoleta Galeș
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Medical Oncology II, “Prof. Dr. Al. Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Luiza Șerbănescu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Radiotherapy II, “Prof. Dr. Al. Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Rodica Maricela Anghel
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Radiotherapy II, “Prof. Dr. Al. Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Mihai-Andrei Păun
- Radiotherapy II, “Prof. Dr. Al. Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| |
Collapse
|
9
|
Association between Temporal Muscle Thickness and Overall Survival in Non-Small Cell Lung Cancer Patients with Brain Metastasis. Curr Oncol 2022; 29:6463-6471. [PMID: 36135077 PMCID: PMC9497949 DOI: 10.3390/curroncol29090508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Temporal muscle thickness (TMT) has recently been suggested as a novel biomarker of sarcopenia in head and neck malignancies. However, few studies have evaluated TMT as a prognostic marker in patients with brain metastasis. This study investigated the association of TMT with overall survival (OS) in non-small cell lung cancer (NSCLC) patients with brain metastasis. The records of all NSCLC patients with brain metastasis between 2009 and 2018 at St. Vincent’s Hospital were reviewed retrospectively. A total of 221 patients met our eligibility criteria. In the group with TMT thicker than the median, OS was longer than the group with TMT thinner than the median (240 days versus 139 days, p = 0.014). In multivariate analysis, the thicker TMT group had longer survival (HR 0.73 CI 0.56−0.96, p = 0.024). Male (HR 1.58 CI 1.19−2.09, p = 0.002) and older age (≥65 years) (HR 2.05 CI 1.53−2.74, p < 0.001) also showed statistical significance. We also performed subgroup analysis in older patients (≥65 years). In this subgroup of 107 patients, the thicker TMT group also showed longer OS than the thinner TMT group (209 days versus 82 days, p = 0.009). Our findings suggest that TMT can be a useful biomarker for OS in NSCLC patients with brain metastasis.
Collapse
|