1
|
Lo Mastro A, Grassi E, Berritto D, Russo A, Reginelli A, Guerra E, Grassi F, Boccia F. Artificial intelligence in fracture detection on radiographs: a literature review. Jpn J Radiol 2024:10.1007/s11604-024-01702-4. [PMID: 39538068 DOI: 10.1007/s11604-024-01702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Fractures are one of the most common reasons of admission to emergency department affecting individuals of all ages and regions worldwide that can be misdiagnosed during radiologic examination. Accurate and timely diagnosis of fracture is crucial for patients, and artificial intelligence that uses algorithms to imitate human intelligence to aid or enhance human performs is a promising solution to address this issue. In the last few years, numerous commercially available algorithms have been developed to enhance radiology practice and a large number of studies apply artificial intelligence to fracture detection. Recent contributions in literature have described numerous advantages showing how artificial intelligence performs better than doctors who have less experience in interpreting musculoskeletal X-rays, and assisting radiologists increases diagnostic accuracy and sensitivity, improves efficiency, and reduces interpretation time. Furthermore, algorithms perform better when they are trained with big data on a wide range of fracture patterns and variants and can provide standardized fracture identification across different radiologist, thanks to the structured report. In this review article, we discuss the use of artificial intelligence in fracture identification and its benefits and disadvantages. We also discuss its current potential impact on the field of radiology and radiomics.
Collapse
Affiliation(s)
- Antonio Lo Mastro
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Enrico Grassi
- Department of Orthopaedics, University of Florence, Florence, Italy
| | - Daniela Berritto
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Russo
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alfonso Reginelli
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Egidio Guerra
- Emergency Radiology Department, "Policlinico Riuniti Di Foggia", Foggia, Italy
| | - Francesca Grassi
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Boccia
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
2
|
Wang SX, Yang Y, Xie H, Yang X, Liu ZQ, Li HJ, Huang WJ, Luo WJ, Lei YM, Sun Y, Ma J, Chen YF, Liu LZ, Mao YP. Radiomics-based nomogram guides adaptive de-intensification in locoregionally advanced nasopharyngeal carcinoma following induction chemotherapy. Eur Radiol 2024; 34:6831-6842. [PMID: 38514481 DOI: 10.1007/s00330-024-10678-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/13/2024] [Accepted: 02/07/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVES This study aimed to construct a radiomics-based model for prognosis and benefit prediction of concurrent chemoradiotherapy (CCRT) versus intensity-modulated radiotherapy (IMRT) in locoregionally advanced nasopharyngeal carcinoma (LANPC) following induction chemotherapy (IC). MATERIALS AND METHODS A cohort of 718 LANPC patients treated with IC + IMRT or IC + CCRT were retrospectively enrolled and assigned to a training set (n = 503) and a validation set (n = 215). Radiomic features were extracted from pre-IC and post-IC MRI. After feature selection, a delta-radiomics signature was built with LASSO-Cox regression. A nomogram incorporating independent clinical indicators and the delta-radiomics signature was then developed and evaluated for calibration and discrimination. Risk stratification by the nomogram was evaluated with Kaplan-Meier methods. RESULTS The delta-radiomics signature, which comprised 19 selected features, was independently associated with prognosis. The nomogram, composed of the delta-radiomics signature, age, T category, N category, treatment, and pre-treatment EBV DNA, showed great calibration and discrimination with an area under the receiver operator characteristic curve of 0.80 (95% CI 0.75-0.85) and 0.75 (95% CI 0.64-0.85) in the training and validation sets. Risk stratification by the nomogram, excluding the treatment factor, resulted in two groups with distinct overall survival. Significantly better outcomes were observed in the high-risk patients with IC + CCRT compared to those with IC + IMRT, while comparable outcomes between IC + IMRT and IC + CCRT were shown for low-risk patients. CONCLUSION The radiomics-based nomogram can predict prognosis and survival benefits from concurrent chemotherapy for LANPC following IC. Low-risk patients determined by the nomogram may be potential candidates for omitting concurrent chemotherapy during IMRT. CLINICAL RELEVANCE STATEMENT The radiomics-based nomogram was constructed for risk stratification and patient selection. It can help guide clinical decision-making for patients with locoregionally advanced nasopharyngeal carcinoma following induction chemotherapy, and avoid unnecessary toxicity caused by overtreatment. KEY POINTS • The benefits from concurrent chemotherapy remained controversial for locoregionally advanced nasopharyngeal carcinoma following induction chemotherapy. • Radiomics-based nomogram achieved prognosis and benefits prediction of concurrent chemotherapy. • Low-risk patients defined by the nomogram were candidates for de-intensification.
Collapse
Affiliation(s)
- Shun-Xin Wang
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Yi Yang
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Hui Xie
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Xin Yang
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Zhi-Qiao Liu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Hao-Jiang Li
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Wen-Jie Huang
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Wei-Jie Luo
- Department of Medical Oncology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yi-Ming Lei
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Yan-Feng Chen
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China.
| | - Li-Zhi Liu
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China.
| | - Yan-Ping Mao
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Lin S, Xue M, Sun J, Xu C, Wang T, Lian J, Lv M, Yang P, Sheng C, Cheng Z, Wang W. MRI Radiomics Nomogram for Predicting Disease Transition Time and Risk Stratification in Preclinical Alzheimer's Disease. Acad Radiol 2024:S1076-6332(24)00646-9. [PMID: 39332990 DOI: 10.1016/j.acra.2024.08.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/29/2024]
Abstract
RATIONALE AND OBJECTIVES Accurate prediction of the progression of preclinical Alzheimer's disease (AD) is crucial for improving clinical management and disease prognosis. The objective of this study was to develop and validate clinical-radimoics integrated model to predict the time to progression (TTP) and disease risk stratification of preclinical AD. MATERIALS AND METHODS A total of 244 cases (mean age: 73.8 ± 5.5 years, 120 women) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were randomly divided into the training cohort (n = 172) and validation cohort (n = 72) using a 7:3 ratio. Clinical factors were identified by univariate and multivariate COX regression. Radiomics features were extracted from GM, WM and CSF of T1WI images and selected by Spearman correlation analysis and least absolute shrinkage and selection operator (LASSO). Using selected clinical factors and radiomics features, the clinical, radimocis and clinical-radiomics nomogram models were developed for predicting the TTP. The performance of each model was assessed by C-index. The risk stratification ability and predicting efficacy of the clinical-radiomics model were utilizing the Kaplan-Meier curve and receiver operator characteristic (ROC) curve. RESULTS The C-index of clinical, radimocis and clinical-radiomics models were 0.852 (95% confidence interval[CI]:0.810-0.893), 0.863 (95%CI:0.816-0.910) and 0.903 (95%:0.870-0.936) in the training cohort and 0.725 (95%CI:0.630-0.820), 0.788 (95%CI:0.678-0.898), 0.813(95%CI:0.734-0.892) in the validation cohort. The AUCs of the multi-predictor nomogram at 1-, 3-, 5- and 7-year were 0.894, 0.908, 0.930, 0.979 in the training cohort and 0.671, 0.726, 0.839, 0.931 in the validation cohort. CONCLUSION In this study, we constructed a clinical-radimoics integrated model to predict the progression of preclinical AD and stratified the risk of disease progression in preclinical AD.
Collapse
Affiliation(s)
- Shuai Lin
- Department of MRI, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Xue
- Department of Radiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiali Sun
- Department of MRI, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Xu
- Department of MRI, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianqi Wang
- Department of MRI, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | - Min Lv
- Department of MRI, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ping Yang
- Department of MRI, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chenjun Sheng
- Department of MRI, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zijian Cheng
- Department of MRI, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Wang
- Department of MRI, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
4
|
Wang CK, Wang TW, Lu CF, Wu YT, Hua MW. Deciphering the Prognostic Efficacy of MRI Radiomics in Nasopharyngeal Carcinoma: A Comprehensive Meta-Analysis. Diagnostics (Basel) 2024; 14:924. [PMID: 38732337 PMCID: PMC11082984 DOI: 10.3390/diagnostics14090924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This meta-analysis investigates the prognostic value of MRI-based radiomics in nasopharyngeal carcinoma treatment outcomes, specifically focusing on overall survival (OS) variability. The study protocol was registered with INPLASY (INPLASY202420101). Initially, a systematic review identified 15 relevant studies involving 6243 patients through a comprehensive search across PubMed, Embase, and Web of Science, adhering to PRISMA guidelines. The methodological quality was assessed using the Quality in Prognosis Studies (QUIPS) tool and the Radiomics Quality Score (RQS), highlighting a low risk of bias in most domains. Our analysis revealed a significant average concordance index (c-index) of 72% across studies, indicating the potential of radiomics in clinical prognostication. However, moderate heterogeneity was observed, particularly in OS predictions. Subgroup analyses and meta-regression identified validation methods and radiomics software as significant heterogeneity moderators. Notably, the number of features in the prognosis model correlated positively with its performance. These findings suggest radiomics' promising role in enhancing cancer treatment strategies, though the observed heterogeneity and potential biases call for cautious interpretation and standardization in future research.
Collapse
Affiliation(s)
- Chih-Keng Wang
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Ting-Wei Wang
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan
| | - Chia-Fung Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan
| | - Man-Wei Hua
- Department of Otolaryngology-Head and Neck Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| |
Collapse
|
5
|
Leung VWS, Ng CKC, Lam SK, Wong PT, Ng KY, Tam CH, Lee TC, Chow KC, Chow YK, Tam VCW, Lee SWY, Lim FMY, Wu JQ, Cai J. Computed Tomography-Based Radiomics for Long-Term Prognostication of High-Risk Localized Prostate Cancer Patients Received Whole Pelvic Radiotherapy. J Pers Med 2023; 13:1643. [PMID: 38138870 PMCID: PMC10744672 DOI: 10.3390/jpm13121643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Given the high death rate caused by high-risk prostate cancer (PCa) (>40%) and the reliability issues associated with traditional prognostic markers, the purpose of this study is to investigate planning computed tomography (pCT)-based radiomics for the long-term prognostication of high-risk localized PCa patients who received whole pelvic radiotherapy (WPRT). This is a retrospective study with methods based on best practice procedures for radiomics research. Sixty-four patients were selected and randomly assigned to training (n = 45) and testing (n = 19) cohorts for radiomics model development with five major steps: pCT image acquisition using a Philips Big Bore CT simulator; multiple manual segmentations of clinical target volume for the prostate (CTVprostate) on the pCT images; feature extraction from the CTVprostate using PyRadiomics; feature selection for overfitting avoidance; and model development with three-fold cross-validation. The radiomics model and signature performances were evaluated based on the area under the receiver operating characteristic curve (AUC) as well as accuracy, sensitivity and specificity. This study's results show that our pCT-based radiomics model was able to predict the six-year progression-free survival of the high-risk localized PCa patients who received the WPRT with highly consistent performances (mean AUC: 0.76 (training) and 0.71 (testing)). These are comparable to findings of other similar studies including those using magnetic resonance imaging (MRI)-based radiomics. The accuracy, sensitivity and specificity of our radiomics signature that consisted of two texture features were 0.778, 0.833 and 0.556 (training) and 0.842, 0.867 and 0.750 (testing), respectively. Since CT is more readily available than MRI and is the standard-of-care modality for PCa WPRT planning, pCT-based radiomics could be used as a routine non-invasive approach to the prognostic prediction of WPRT treatment outcomes in high-risk localized PCa.
Collapse
Affiliation(s)
- Vincent W. S. Leung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Curtise K. C. Ng
- Curtin Medical School, Curtin University, GPO Box U1987, Perth, WA 6845, Australia;
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Sai-Kit Lam
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Po-Tsz Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Ka-Yan Ng
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Cheuk-Hong Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Tsz-Ching Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Kin-Chun Chow
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Yan-Kate Chow
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Victor C. W. Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Shara W. Y. Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Fiona M. Y. Lim
- Department of Oncology, Princess Margaret Hospital, Hong Kong SAR, China;
| | - Jackie Q. Wu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27708, USA;
| | - Jing Cai
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| |
Collapse
|