1
|
Lo Mastro A, Grassi E, Berritto D, Russo A, Reginelli A, Guerra E, Grassi F, Boccia F. Artificial intelligence in fracture detection on radiographs: a literature review. Jpn J Radiol 2024:10.1007/s11604-024-01702-4. [PMID: 39538068 DOI: 10.1007/s11604-024-01702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Fractures are one of the most common reasons of admission to emergency department affecting individuals of all ages and regions worldwide that can be misdiagnosed during radiologic examination. Accurate and timely diagnosis of fracture is crucial for patients, and artificial intelligence that uses algorithms to imitate human intelligence to aid or enhance human performs is a promising solution to address this issue. In the last few years, numerous commercially available algorithms have been developed to enhance radiology practice and a large number of studies apply artificial intelligence to fracture detection. Recent contributions in literature have described numerous advantages showing how artificial intelligence performs better than doctors who have less experience in interpreting musculoskeletal X-rays, and assisting radiologists increases diagnostic accuracy and sensitivity, improves efficiency, and reduces interpretation time. Furthermore, algorithms perform better when they are trained with big data on a wide range of fracture patterns and variants and can provide standardized fracture identification across different radiologist, thanks to the structured report. In this review article, we discuss the use of artificial intelligence in fracture identification and its benefits and disadvantages. We also discuss its current potential impact on the field of radiology and radiomics.
Collapse
Affiliation(s)
- Antonio Lo Mastro
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Enrico Grassi
- Department of Orthopaedics, University of Florence, Florence, Italy
| | - Daniela Berritto
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Russo
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alfonso Reginelli
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Egidio Guerra
- Emergency Radiology Department, "Policlinico Riuniti Di Foggia", Foggia, Italy
| | - Francesca Grassi
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Boccia
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
2
|
Parillo M, Vaccarino F, Beomonte Zobel B, Mallio CA. ChatGPT and radiology report: potential applications and limitations. LA RADIOLOGIA MEDICA 2024:10.1007/s11547-024-01915-7. [PMID: 39508933 DOI: 10.1007/s11547-024-01915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Large language models like ChatGPT, with their growing accessibility, are attracting increasing interest within the artificial intelligence medical field, particularly in the analysis of radiology reports. These present a valuable opportunity to explore the potential clinical applications of large language models, given their huge capabilities in processing and understanding written language. Early research indicates that ChatGPT could offer benefits in radiology reporting. ChatGPT can assist but not replace radiologists in achieving diagnoses, generating structured reports, extracting data, identifying errors or incidental findings, and can also serve as a support in creating patient-friendly reports. However, ChatGPT also has intrinsic limitations, such as hallucinations, stochasticity, biases, deficiencies in complex clinical scenarios, data privacy and legal concerns. To fully utilize the potential of ChatGPT in radiology reporting, careful integration planning and rigorous validation of their outputs are crucial, especially for tasks requiring abstract reasoning or nuanced medical context. Radiologists' expertise in medical imaging and data analysis positions them exceptionally well to lead the responsible integration and utilization of ChatGPT within the field of radiology. This article offers a topical overview of the potential strengths and limitations of ChatGPT in radiological reporting.
Collapse
Affiliation(s)
- Marco Parillo
- Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, Trento, Italy.
| | - Federica Vaccarino
- Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, Trento, Italy
- Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Bruno Beomonte Zobel
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
- Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Carlo Augusto Mallio
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
- Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| |
Collapse
|
3
|
Varriano G, Nardone V, Brunese MC, Bruno M, Santone A, Brunese L, Zappia M. An approach leveraging radiomics and model checking for the automatic early diagnosis of adhesive capsulitis. Sci Rep 2024; 14:18878. [PMID: 39143129 PMCID: PMC11324739 DOI: 10.1038/s41598-024-69392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Adhesive Capsulitis of the shoulder is a painful pathology limiting shoulder movements, commonly known as "Frozen Shoulder". Since this pathology limits movement, it is important to make an early diagnosis. Diagnosing capsulitis relies on clinical assessment, although diagnostic imaging, such as Magnetic Resonance Imaging, can provide predictive or supportive information for specific characteristic signs. However, its diagnosis is not so simple nor so immediate, indeed it remains a difficult topic for many general radiologists and expert musculoskeletal radiologists. This study aims to investigate whether it is possible to use disease signs within a medical image to automatically diagnose Adhesive Capsulitis. To this purpose, we propose an automatic Model Checking-based approach to quickly diagnose the Adhesive Capsulitis taking as input the radiomic feature values from the medical images. Furthermore, we compare the performance achieved by our method with diagnostic results obtained by professional radiologists with different levels of experience. To the best of our knowledge, this is the first method for the automatic diagnosis of Adhesive Capsulitis of the Shoulder.
Collapse
Affiliation(s)
- Giulia Varriano
- Department of Medicine and Surgery "V. Tiberio", University of Molise, 86100, Campobasso, Italy.
| | - Vittoria Nardone
- Department of Medicine and Surgery "V. Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Maria Chiara Brunese
- Department of Medicine and Surgery "V. Tiberio", University of Molise, 86100, Campobasso, Italy.
| | - Michela Bruno
- Department of Medicine and Surgery "V. Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Antonella Santone
- Department of Medicine and Surgery "V. Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Luca Brunese
- Department of Medicine and Surgery "V. Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Marcello Zappia
- Department of Medicine and Surgery "V. Tiberio", University of Molise, 86100, Campobasso, Italy
| |
Collapse
|
4
|
Trovato P, Simonetti I, Morrone A, Fusco R, Setola SV, Giacobbe G, Brunese MC, Pecchi A, Triggiani S, Pellegrino G, Petralia G, Sica G, Petrillo A, Granata V. Scientific Status Quo of Small Renal Lesions: Diagnostic Assessment and Radiomics. J Clin Med 2024; 13:547. [PMID: 38256682 PMCID: PMC10816509 DOI: 10.3390/jcm13020547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Background: Small renal masses (SRMs) are defined as contrast-enhanced renal lesions less than or equal to 4 cm in maximal diameter, which can be compatible with stage T1a renal cell carcinomas (RCCs). Currently, 50-61% of all renal tumors are found incidentally. Methods: The characteristics of the lesion influence the choice of the type of management, which include several methods SRM of management, including nephrectomy, partial nephrectomy, ablation, observation, and also stereotactic body radiotherapy. Typical imaging methods available for differentiating benign from malignant renal lesions include ultrasound (US), contrast-enhanced ultrasound (CEUS), computed tomography (CT), and magnetic resonance imaging (MRI). Results: Although ultrasound is the first imaging technique used to detect small renal lesions, it has several limitations. CT is the main and most widely used imaging technique for SRM characterization. The main advantages of MRI compared to CT are the better contrast resolution and tissue characterization, the use of functional imaging sequences, the possibility of performing the examination in patients allergic to iodine-containing contrast medium, and the absence of exposure to ionizing radiation. For a correct evaluation during imaging follow-up, it is necessary to use a reliable method for the assessment of renal lesions, represented by the Bosniak classification system. This classification was initially developed based on contrast-enhanced CT imaging findings, and the 2019 revision proposed the inclusion of MRI features; however, the latest classification has not yet received widespread validation. Conclusions: The use of radiomics in the evaluation of renal masses is an emerging and increasingly central field with several applications such as characterizing renal masses, distinguishing RCC subtypes, monitoring response to targeted therapeutic agents, and prognosis in a metastatic context.
Collapse
Affiliation(s)
- Piero Trovato
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| | - Igino Simonetti
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| | - Alessio Morrone
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Sergio Venanzio Setola
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| | - Giuliana Giacobbe
- General and Emergency Radiology Department, “Antonio Cardarelli” Hospital, 80131 Naples, Italy;
| | - Maria Chiara Brunese
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy;
| | - Annarita Pecchi
- Department of Radiology, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Sonia Triggiani
- Postgraduate School of Radiodiagnostics, University of Milan, 20122 Milan, Italy; (S.T.); (G.P.)
| | - Giuseppe Pellegrino
- Postgraduate School of Radiodiagnostics, University of Milan, 20122 Milan, Italy; (S.T.); (G.P.)
| | - Giuseppe Petralia
- Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
| | - Giacomo Sica
- Radiology Unit, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy;
| | - Antonella Petrillo
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| | - Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| |
Collapse
|
5
|
Hryciw BN, Seely AJE, Kyeremanteng K. Guiding principles and proposed classification system for the responsible adoption of artificial intelligence in scientific writing in medicine. Front Artif Intell 2023; 6:1283353. [PMID: 38035200 PMCID: PMC10687472 DOI: 10.3389/frai.2023.1283353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
The integration of large language models (LLMs) and artificial intelligence (AI) into scientific writing, especially in medical literature, presents both unprecedented opportunities and inherent challenges. This manuscript evaluates the transformative potential of LLMs for the synthesis of information, linguistic enhancements, and global knowledge dissemination. At the same time, it raises concerns about unintentional plagiarism, the risk of misinformation, data biases, and an over-reliance on AI. To address these, we propose governing principles for AI adoption that ensure integrity, transparency, validity, and accountability. Additionally, guidelines for reporting AI involvement in manuscript development are delineated, and a classification system to specify the level of AI assistance is introduced. This approach uniquely addresses the challenges of AI in scientific writing, emphasizing transparency in authorship, qualification of AI involvement, and ethical considerations. Concerns regarding access equity, potential biases in AI-generated content, authorship dynamics, and accountability are also explored, emphasizing the human author's continued responsibility. Recommendations are made for fostering collaboration between AI developers, researchers, and journal editors and for emphasizing the importance of AI's responsible use in academic writing. Regular evaluations of AI's impact on the quality and biases of medical manuscripts are also advocated. As we navigate the expanding realm of AI in scientific discourse, it is crucial to maintain the human element of creativity, ethics, and oversight, ensuring that the integrity of scientific literature remains uncompromised.
Collapse
Affiliation(s)
- Brett N. Hryciw
- Division of Critical Care, Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Andrew J. E. Seely
- Division of Thoracic Surgery, Department of Surgery, The Ottawa Hospital, Ottawa, ON, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Kwadwo Kyeremanteng
- Division of Critical Care, Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
- Institute du Savoir Montfort, Ottawa, ON, Canada
| |
Collapse
|