1
|
Gueziri HE, Georgiopoulos M, Santaguida C, Collins DL. Ultrasound-based navigated pedicle screw insertion without intraoperative radiation: feasibility study on porcine cadavers. Spine J 2022; 22:1408-1417. [PMID: 35523390 DOI: 10.1016/j.spinee.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Navigation systems for spinal fusion surgery rely on intraoperative computed tomography (CT) or fluoroscopy imaging. Both expose patient, surgeons and operating room staff to significant amounts of radiation. Alternative methods involving intraoperative ultrasound (iUS) imaging have recently shown promise for image-to-patient registration. Yet, the feasibility and safety of iUS navigation in spinal fusion have not been demonstrated. PURPOSE To evaluate the accuracy of pedicle screw insertion in lumbar and thoracolumbar spinal fusion using a fully automated iUS navigation system. STUDY DESIGN Prospective porcine cadaver study. METHODS Five porcine cadavers were used to instrument the lumbar and thoracolumbar spine using posterior open surgery. During the procedure, iUS images were acquired and used to establish automatic registration between the anatomy and preoperative CT images. Navigation was performed with the preoperative CT using tracked instruments. The accuracy of the system was measured as the distance of manually collected points to the preoperative CT vertebral surface and compared against fiducial-based registration. A postoperative CT was acquired, and screw placements were manually verified. We report breach rates, as well as axial and sagittal screw deviations. RESULTS A total of 56 screws were inserted (5.50 mm diameter n=50, and 6.50 mm diameter n=6). Fifty-two screws were inserted safely without breach. Four screws (7.14%) presented a medial breach with an average deviation of 1.35±0.37 mm (all <2 mm). Two breaches were caused by 6.50 mm diameter screws, and two by 5.50 mm screws. For vertebrae instrumented with 5.50 mm screws, the average axial diameter of the pedicle was 9.29 mm leaving a 1.89 mm margin in the left and right pedicle. For vertebrae instrumented with 6.50 mm screws, the average axial diameter of the pedicle was 8.99 mm leaving a 1.24 mm error margin in the left and right pedicle. The average distance to the vertebral surface was 0.96 mm using iUS registration and 0.97 mm using fiducial-based registration. CONCLUSIONS We successfully implanted all pedicle screws in the thoracolumbar spine using the ultrasound-based navigation system. All breaches recorded were minor (<2 mm) and the breach rate (7.14%) was comparable to existing literature. More investigation is needed to evaluate consistency, reproducibility, and performance in surgical context. CLINICAL SIGNIFICANCE Intraoperative US-based navigation is feasible and practical for pedicle screw insertion in a porcine model. It might be used as a low-cost and radiation-free alternative to intraoperative CT and fluoroscopy in the future.
Collapse
Affiliation(s)
- Houssem-Eddine Gueziri
- McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, 3801 University St, Montreal, Quebec, Canada.
| | - Miltiadis Georgiopoulos
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University St, Montreal, Quebec, Canada
| | - Carlo Santaguida
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University St, Montreal, Quebec, Canada
| | - D Louis Collins
- McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, 3801 University St, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University St, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Cai Y, Wu S, Fan X, Olson J, Evans L, Lollis S, Mirza SK, Paulsen KD, Ji S. A level-wise spine registration framework to account for large pose changes. Int J Comput Assist Radiol Surg 2021; 16:943-953. [PMID: 33973113 PMCID: PMC8358825 DOI: 10.1007/s11548-021-02395-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/29/2021] [Indexed: 11/27/2022]
Abstract
PURPOSES Accurate and efficient spine registration is crucial to success of spine image guidance. However, changes in spine pose cause intervertebral motion that can lead to significant registration errors. In this study, we develop a geometrical rectification technique via nonlinear principal component analysis (NLPCA) to achieve level-wise vertebral registration that is robust to large changes in spine pose. METHODS We used explanted porcine spines and live pigs to develop and test our technique. Each sample was scanned with preoperative CT (pCT) in an initial pose and rescanned with intraoperative stereovision (iSV) in a different surgical posture. Patient registration rectified arbitrary spinal postures in pCT and iSV into a common, neutral pose through a parameterized moving-frame approach. Topologically encoded depth projection 2D images were then generated to establish invertible point-to-pixel correspondences. Level-wise point correspondences between pCT and iSV vertebral surfaces were generated via 2D image registration. Finally, closed-form vertebral level-wise rigid registration was obtained by directly mapping 3D surface point pairs. Implanted mini-screws were used as fiducial markers to measure registration accuracy. RESULTS In seven explanted porcine spines and two live animal surgeries (maximum in-spine pose change of 87.5 mm and 32.7 degrees averaged from all spines), average target registration errors (TRE) of 1.70 ± 0.15 mm and 1.85 ± 0.16 mm were achieved, respectively. The automated spine rectification took 3-5 min, followed by an additional 30 secs for depth image projection and level-wise registration. CONCLUSIONS Accuracy and efficiency of the proposed level-wise spine registration support its application in human open spine surgeries. The registration framework, itself, may also be applicable to other intraoperative imaging modalities such as ultrasound and MRI, which may expand utility of the approach in spine registration in general.
Collapse
Affiliation(s)
- Yunliang Cai
- Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA, 01609, USA
| | - Shaoju Wu
- Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA, 01609, USA
| | - Xiaoyao Fan
- Dartmouth College Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, 03766, USA
| | - Jonathan Olson
- Dartmouth College Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, 03766, USA
| | - Linton Evans
- Dartmouth College Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, 03766, USA
| | - Scott Lollis
- University of Vermont Medical Center, Burlington, VT, 05401, USA
| | - Sohail K Mirza
- Dartmouth College Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, 03766, USA
| | - Keith D Paulsen
- Dartmouth College Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, 03766, USA
| | - Songbai Ji
- Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA, 01609, USA.
| |
Collapse
|
3
|
Gueziri HE, Yan CXB, Collins DL. Open-source software for ultrasound-based guidance in spinal fusion surgery. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3353-3368. [PMID: 32907772 DOI: 10.1016/j.ultrasmedbio.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/10/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Spinal instrumentation and surgical manipulations may cause loss of navigation accuracy requiring an efficient re-alignment of the patient anatomy with pre-operative images during surgery. While intra-operative ultrasound (iUS) guidance has shown clear potential to reduce surgery time, compared with clinical computed tomography (CT) guidance, rapid registration aiming to correct for patient misalignment has not been addressed. In this article, we present an open-source platform for pedicle screw navigation using iUS imaging. The alignment method is based on rigid registration of CT to iUS vertebral images and has been designed for fast and fully automatic patient re-alignment in the operating room. Two steps are involved: first, we use the iUS probe's trajectory to achieve an initial coarse registration; then, the registration transform is refined by simultaneously optimizing gradient orientation alignment and mean of iUS intensities passing through the CT-defined posterior surface of the vertebra. We evaluated our approach on a lumbosacral section of a porcine cadaver with seven vertebral levels. We achieved a median target registration error of 1.47 mm (100% success rate, defined by a target registration error <2 mm) when applying the probe's trajectory initial alignment. The approach exhibited high robustness to partial visibility of the vertebra with success rates of 89.86% and 88.57% when missing either the left or right part of the vertebra and robustness to initial misalignments with a success rate of 83.14% for random starts within ±20° rotation and ±20 mm translation. Our graphics processing unit implementation achieves an efficient registration time under 8 s, which makes the approach suitable for clinical application.
Collapse
Affiliation(s)
- Houssem-Eddine Gueziri
- McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.
| | - Charles X B Yan
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - D Louis Collins
- McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Automatic extraction of vertebral landmarks from ultrasound images: A pilot study. Comput Biol Med 2020; 122:103838. [DOI: 10.1016/j.compbiomed.2020.103838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022]
|
5
|
Gueziri HE, Santaguida C, Collins DL. The state-of-the-art in ultrasound-guided spine interventions. Med Image Anal 2020; 65:101769. [PMID: 32668375 DOI: 10.1016/j.media.2020.101769] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
During the last two decades, intra-operative ultrasound (iUS) imaging has been employed for various surgical procedures of the spine, including spinal fusion and needle injections. Accurate and efficient registration of pre-operative computed tomography or magnetic resonance images with iUS images are key elements in the success of iUS-based spine navigation. While widely investigated in research, iUS-based spine navigation has not yet been established in the clinic. This is due to several factors including the lack of a standard methodology for the assessment of accuracy, robustness, reliability, and usability of the registration method. To address these issues, we present a systematic review of the state-of-the-art techniques for iUS-guided registration in spinal image-guided surgery (IGS). The review follows a new taxonomy based on the four steps involved in the surgical workflow that include pre-processing, registration initialization, estimation of the required patient to image transformation, and a visualization process. We provide a detailed analysis of the measurements in terms of accuracy, robustness, reliability, and usability that need to be met during the evaluation of a spinal IGS framework. Although this review is focused on spinal navigation, we expect similar evaluation criteria to be relevant for other IGS applications.
Collapse
Affiliation(s)
- Houssem-Eddine Gueziri
- McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, Montreal (QC), Canada; McGill University, Montreal (QC), Canada.
| | - Carlo Santaguida
- Department of Neurology and Neurosurgery, McGill University Health Center, Montreal (QC), Canada
| | - D Louis Collins
- McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, Montreal (QC), Canada; McGill University, Montreal (QC), Canada
| |
Collapse
|
6
|
Saß B, Bopp M, Nimsky C, Carl B. Navigated 3-Dimensional Intraoperative Ultrasound for Spine Surgery. World Neurosurg 2019; 131:e155-e169. [DOI: 10.1016/j.wneu.2019.07.188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022]
|
7
|
Toward real-time rigid registration of intra-operative ultrasound with preoperative CT images for lumbar spinal fusion surgery. Int J Comput Assist Radiol Surg 2019; 14:1933-1943. [DOI: 10.1007/s11548-019-02020-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
|
8
|
|
9
|
Drouin S, Kochanowska A, Kersten-Oertel M, Gerard IJ, Zelmann R, De Nigris D, Bériault S, Arbel T, Sirhan D, Sadikot AF, Hall JA, Sinclair DS, Petrecca K, DelMaestro RF, Collins DL. IBIS: an OR ready open-source platform for image-guided neurosurgery. Int J Comput Assist Radiol Surg 2016; 12:363-378. [DOI: 10.1007/s11548-016-1478-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
|
10
|
Ji S, Fan X, Paulsen KD, Roberts DW, Mirza SK, Lollis SS. Intraoperative CT as a registration benchmark for intervertebral motion compensation in image-guided open spinal surgery. Int J Comput Assist Radiol Surg 2015; 10:2009-20. [PMID: 26194485 PMCID: PMC4734629 DOI: 10.1007/s11548-015-1255-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/30/2015] [Indexed: 02/19/2023]
Abstract
PURPOSE An accurate and reliable benchmark of registration accuracy and intervertebral motion compensation is important for spinal image guidance. In this study, we evaluated the utility of intraoperative CT (iCT) in place of bone-implanted screws as the ground-truth registration and illustrated its use to benchmark the performance of intraoperative stereovision (iSV). METHODS A template-based, multi-body registration scheme was developed to individually segment and pair corresponding vertebrae between preoperative CT and iCT of the spine. Intervertebral motion was determined from the resulting vertebral pair-wise registrations. The accuracy of the image-driven registration was evaluated using surface-to-surface distance error (SDE) based on segmented bony features and was independently verified using point-to-point target registration error (TRE) computed from bone-implanted mini-screws. Both SDE and TRE were used to assess the compensation accuracy using iSV. RESULTS The iCT-based technique was evaluated on four explanted porcine spines (20 vertebral pairs) with artificially induced motion. We report a registration accuracy of 0.57 [Formula: see text] 0.32 mm (range 0.34-1.14 mm) and 0.29 [Formula: see text] 0.15 mm (range 0.14-0.78 mm) in SDE and TRE, respectively, for all vertebrae pooled, with an average intervertebral rotation of [Formula: see text] (range 1.5[Formula: see text]-7.9[Formula: see text]). The iSV-based compensation accuracy for one sample (four vertebrae) was 1.32 [Formula: see text] 0.19 mm and 1.72 [Formula: see text] 0.55 mm in SDE and TRE, respectively, exceeding the recommended accuracy of 2 mm. CONCLUSION This study demonstrates the effectiveness of iCT in place of invasive fiducials as a registration ground truth. These findings are important for future development of on-demand spinal image guidance using radiation-free images such as stereovision and ultrasound on human subjects.
Collapse
Affiliation(s)
- Songbai Ji
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA.
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA.
| | - Xiaoyao Fan
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Keith D Paulsen
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
- Dartmouth Hitchcock Medical Center, Lebanon, NH, 03766, USA
| | - David W Roberts
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
- Dartmouth Hitchcock Medical Center, Lebanon, NH, 03766, USA
| | - Sohail K Mirza
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
- Dartmouth Hitchcock Medical Center, Lebanon, NH, 03766, USA
| | - S Scott Lollis
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
- Dartmouth Hitchcock Medical Center, Lebanon, NH, 03766, USA
| |
Collapse
|
11
|
Ji S, Fan X, Paulsen KD, Roberts DW, Mirza SK, Lollis SS. Patient Registration Using Intraoperative Stereovision in Image-guided Open Spinal Surgery. IEEE Trans Biomed Eng 2015; 62:2177-86. [PMID: 25826802 PMCID: PMC4545737 DOI: 10.1109/tbme.2015.2415731] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite its widespread availability and success in open cranial neurosurgery, image-guidance technology remains more limited in use in open spinal procedures, in large part, because of patient registration challenges. In this study, we evaluated the feasibility of using intraoperative stereovision (iSV) for accurate, efficient, and robust patient registration in an open spinal fusion surgery. Geometrical surfaces of exposed vertebrae were first reconstructed from iSV. A classical multistart registration was then executed between point clouds generated from iSV and preoperative computed tomography images of the spine. With two pairs of feature points manually identified to facilitate the registration, an average registration accuracy of 1.43 mm in terms of surface-to-surface distance error was achieved in eight patient cases using a single iSV image pair sampling 2-3 vertebral segments. The iSV registration error was consistently smaller than the conventional landmark approach for every case (average of 2.02 mm with the same error metric). The large capture ranges (average of 23.8 mm in translation and 46.0° in rotation) found in the iSV patient registration suggest the technique may offer sufficient robustness for practical application in the operating room. Although some manual effort was still necessary, the manually-derived inputs for iSV registration only needed to be approximate as opposed to be precise and accurate for the manual efforts required in landmark registration. The total computational cost of the iSV registration was 1.5 min on average, significantly less than the typical ∼30 min required for the landmark approach. These findings support the clinical feasibility of iSV to offer accurate, efficient, and robust patient registration in open spinal surgery, and therefore, its potential to further increase the adoption of image guidance in this surgical specialty.
Collapse
Affiliation(s)
- Songbai Ji
- Thayer School of Engineering, Dartmouth, Hanover, NH 03755 USA
| | - Xiaoyao Fan
- Thayer School of Engineering, Dartmouth, Hanover, NH 03755 USA
| | | | - David W. Roberts
- Geisel School of Medicine, Dartmouth College, Hanover NH 03755, USA, and with Dartmouth Hitchcock Medical Center, Lebanon NH 03766 USA
| | - Sohail K. Mirza
- Geisel School of Medicine, Dartmouth College, Hanover NH 03755, USA, and with Dartmouth Hitchcock Medical Center, Lebanon NH 03766 USA
| | - S. Scott Lollis
- Geisel School of Medicine, Dartmouth College, Hanover NH 03755, USA, and with Dartmouth Hitchcock Medical Center, Lebanon NH 03766 USA
| |
Collapse
|