1
|
Daher M, Ghanimeh J, Otayek J, Ghoul A, Bizdikian AJ, EL Abiad R. Augmented reality and shoulder replacement: a state-of-the-art review article. JSES REVIEWS, REPORTS, AND TECHNIQUES 2023; 3:274-278. [PMID: 37588507 PMCID: PMC10426657 DOI: 10.1016/j.xrrt.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since its implementation, the rates of failure of total shoulder arthroplasty which may be due to malpositioning pushed to improve this surgery by creating new techniques and tools to help perioperatively. Augmented reality, a newly used tool in orthopedic surgery can help bypass this problem and reduce the rates of failure faced in shoulder replacement surgeries. Although this technology has revolutionized orthopedic surgery and helped improve the accuracy in shoulder prosthesis components positioning, it still has some limitations such as inaccurate over-imposition that should be addressed before it becomes of standard usage.
Collapse
Affiliation(s)
- Mohammad Daher
- Hotel Dieu de France, Saint Joseph University, Beirut, Lebanon
| | - Joe Ghanimeh
- Lebanese American University Medical Center Rizk Hospital, Beirut, Lebanon
| | - Joeffroy Otayek
- Lebanese American University Medical Center Rizk Hospital, Beirut, Lebanon
| | - Ali Ghoul
- Hotel Dieu de France, Saint Joseph University, Beirut, Lebanon
| | | | - Rami EL Abiad
- Hotel Dieu de France, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
2
|
Dalili D, Isaac A, Fritz J. MRI-guided sacroiliac joint injections in children and adults: current practice and future developments. Skeletal Radiol 2023; 52:951-965. [PMID: 36006462 DOI: 10.1007/s00256-022-04161-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/02/2023]
Abstract
Common etiologies of low back pain include degenerative arthrosis and inflammatory arthropathy of the sacroiliac joints. The diagnostic workup revolves around identifying and confirming the sacroiliac joints as a pain generator. Diagnostic sacroiliac joint injections often serve as functional additions to the diagnostic workup through eliciting a pain response that tests the hypothesis that the sacroiliac joints do or do not contribute to the patient's pain syndrome. Therapeutic sacroiliac joint injections aim to provide medium- to long-term relief of symptoms and reduce inflammatory activity and, ultimately, irreversible structural damage. Ultrasonography, fluoroscopy, computed tomography, and magnetic resonance imaging (MRI) may be used to guide sacroiliac joint injections. The populations that may benefit most from MRI-guided sacroiliac joint procedures include children, adolescents, adults of childbearing age, and patients receiving serial injections due to the ability of interventional MRI to avoid radiation exposure. Most clinical wide-bore MRI systems can be used for MRI-guided sacroiliac joint injections. Turbo spin echo pulse sequences optimized for interventional needle display visualize the needle tip with an error margin of < 1 mm or less. Published success rates of intra-articular sacroiliac joint drug delivery with MRI guidance range between 87 and 100%. The time required for MR-guided sacroiliac joint injections in adults range between 23-35 min and 40 min in children. In this article, we describe techniques for MRI-guided sacroiliac joint injections, share our practice of incorporating interventional MRI in the care of patients with sacroiliac joint mediated pain, discuss the rationales, benefits, and limitations of interventional MRI, and conclude with future developments.
Collapse
Affiliation(s)
- Danoob Dalili
- Academic Surgical Unit, South West London Elective Orthopaedic Centre (SWLEOC), Dorking Road, KT18 7EG, London, UK
| | - Amanda Isaac
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Diagnostic and Interventional Radiology, Guy's and St Thomas' Hospitals NHS Foundation Trust, London, UK
| | - Jan Fritz
- Department of Radiology, New York University Grossman School of Medicine, 660 1st Ave, 3rd Floor, Rm 313, New York, NY, 10016, USA.
| |
Collapse
|
3
|
Posa A, Barbieri P, Mazza G, Tanzilli A, Natale L, Sala E, Iezzi R. Technological Advancements in Interventional Oncology. Diagnostics (Basel) 2023; 13:228. [PMID: 36673038 PMCID: PMC9857620 DOI: 10.3390/diagnostics13020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Interventional radiology, and particularly interventional oncology, represents one of the medical subspecialties in which technological advancements and innovations play an utterly fundamental role. Artificial intelligence, consisting of big data analysis and feature extrapolation through computational algorithms for disease diagnosis and treatment response evaluation, is nowadays playing an increasingly important role in various healthcare fields and applications, from diagnosis to treatment response prediction. One of the fields which greatly benefits from artificial intelligence is interventional oncology. In addition, digital health, consisting of practical technological applications, can assist healthcare practitioners in their daily activities. This review aims to cover the most useful, established, and interesting artificial intelligence and digital health innovations and updates, to help physicians become more and more involved in their use in clinical practice, particularly in the field of interventional oncology.
Collapse
Affiliation(s)
- Alessandro Posa
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology—A. Gemelli University Hospital Foundation IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Pierluigi Barbieri
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology—A. Gemelli University Hospital Foundation IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Giulia Mazza
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology—A. Gemelli University Hospital Foundation IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Alessandro Tanzilli
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology—A. Gemelli University Hospital Foundation IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Luigi Natale
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology—A. Gemelli University Hospital Foundation IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Istituto di Radiodiagnostica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Evis Sala
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology—A. Gemelli University Hospital Foundation IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Istituto di Radiodiagnostica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Roberto Iezzi
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology—A. Gemelli University Hospital Foundation IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Istituto di Radiodiagnostica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
4
|
XR (Extended Reality: Virtual Reality, Augmented Reality, Mixed Reality) Technology in Spine Medicine: Status Quo and Quo Vadis. J Clin Med 2022; 11:jcm11020470. [PMID: 35054164 PMCID: PMC8779726 DOI: 10.3390/jcm11020470] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
In recent years, with the rapid advancement and consumerization of virtual reality, augmented reality, mixed reality, and extended reality (XR) technology, the use of XR technology in spine medicine has also become increasingly popular. The rising use of XR technology in spine medicine has also been accelerated by the recent wave of digital transformation (i.e., case-specific three-dimensional medical images and holograms, wearable sensors, video cameras, fifth generation, artificial intelligence, and head-mounted displays), and further accelerated by the COVID-19 pandemic and the increase in minimally invasive spine surgery. The COVID-19 pandemic has a negative impact on society, but positive impacts can also be expected, including the continued spread and adoption of telemedicine services (i.e., tele-education, tele-surgery, tele-rehabilitation) that promote digital transformation. The purpose of this narrative review is to describe the accelerators of XR (VR, AR, MR) technology in spine medicine and then to provide a comprehensive review of the use of XR technology in spine medicine, including surgery, consultation, education, and rehabilitation, as well as to identify its limitations and future perspectives (status quo and quo vadis).
Collapse
|
5
|
Augmented Reality (AR) in Orthopedics: Current Applications and Future Directions. Curr Rev Musculoskelet Med 2021; 14:397-405. [PMID: 34751894 DOI: 10.1007/s12178-021-09728-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Imaging technologies (X-ray, CT, MRI, and ultrasound) have revolutionized orthopedic surgery, allowing for the more efficient diagnosis, monitoring, and treatment of musculoskeletal aliments. The current review investigates recent literature surrounding the impact of augmented reality (AR) imaging technologies on orthopedic surgery. In particular, it investigates the impact that AR technologies may have on provider cognitive burden, operative times, occupational radiation exposure, and surgical precision and outcomes. RECENT FINDINGS Many AR technologies have been shown to lower provider cognitive burden and reduce operative time and radiation exposure while improving surgical precision in pre-clinical cadaveric and sawbones models. So far, only a few platforms focusing on pedicle screw placement have been approved by the FDA. These technologies have been implemented clinically with mixed results when compared to traditional free-hand approaches. It remains to be seen if current AR technologies can deliver upon their multitude of promises, and the ability to do so seems contingent upon continued technological progress. Additionally, the impact of these platforms will likely be highly conditional on clinical indication and provider type. It remains unclear if AR will be broadly accepted and utilized or if it will be reserved for niche indications where it adds significant value. One thing is clear, orthopedics' high utilization of pre- and intra-operative imaging, combined with the relative ease of tracking rigid structures like bone as compared to soft tissues, has made it the clear beachhead market for AR technologies in medicine.
Collapse
|
6
|
Ha J, Parekh P, Gamble D, Masters J, Jun P, Hester T, Daniels T, Halai M. Opportunities and challenges of using augmented reality and heads-up display in orthopaedic surgery: A narrative review. J Clin Orthop Trauma 2021; 18:209-215. [PMID: 34026489 PMCID: PMC8131920 DOI: 10.1016/j.jcot.2021.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/28/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND & AIM Utilization of augmented reality (AR) and heads-up displays (HUD) to aid orthopaedic surgery has the potential to benefit surgeons and patients alike through improved accuracy, safety, and educational benefits. With the COVID-19 pandemic, the opportunity for adoption of novel technology is more relevant. The aims are to assess the technology available, to understand the current evidence regarding the benefit and to consider challenges to implementation in clinical practice. METHODS & RESULTS PRISMA guidelines were used to filter the literature. Of 1004 articles returned the following exclusion criteria were applied: 1) reviews/commentaries 2) unrelated to orthopaedic surgery 3) use of other AR wearables beyond visual aids leaving 42 papers for review.This review illustrates benefits including enhanced accuracy and reduced time of surgery, reduced radiation exposure and educational benefits. CONCLUSION Whilst there are obstacles to overcome, there are already reports of technology being used. As with all novel technologies, a greater understanding of the learning curve is crucial, in addition to shielding our patients from this learning curve. Improvements in usability and implementing surgeons' specific needs should increase uptake.
Collapse
Affiliation(s)
- Joon Ha
- Queen Elizabeth Hospital, London, UK,Corresponding author.
| | | | | | - James Masters
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), UK
| | - Peter Jun
- University of Alberta, Edmonton, Canada
| | | | | | - Mansur Halai
- St Michael's Hospital, University of Toronto, Canada
| |
Collapse
|
7
|
Jud L, Fotouhi J, Andronic O, Aichmair A, Osgood G, Navab N, Farshad M. Applicability of augmented reality in orthopedic surgery - A systematic review. BMC Musculoskelet Disord 2020; 21:103. [PMID: 32061248 PMCID: PMC7023780 DOI: 10.1186/s12891-020-3110-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Computer-assisted solutions are changing surgical practice continuously. One of the most disruptive technologies among the computer-integrated surgical techniques is Augmented Reality (AR). While Augmented Reality is increasingly used in several medical specialties, its potential benefit in orthopedic surgery is not yet clear. The purpose of this article is to provide a systematic review of the current state of knowledge and the applicability of AR in orthopedic surgery. METHODS A systematic review of the current literature was performed to find the state of knowledge and applicability of AR in Orthopedic surgery. A systematic search of the following three databases was performed: "PubMed", "Cochrane Library" and "Web of Science". The systematic review followed the Preferred Reporting Items on Systematic Reviews and Meta-analysis (PRISMA) guidelines and it has been published and registered in the international prospective register of systematic reviews (PROSPERO). RESULTS 31 studies and reports are included and classified into the following categories: Instrument / Implant Placement, Osteotomies, Tumor Surgery, Trauma, and Surgical Training and Education. Quality assessment could be performed in 18 studies. Among the clinical studies, there were six case series with an average score of 90% and one case report, which scored 81% according to the Joanna Briggs Institute Critical Appraisal Checklist (JBI CAC). The 11 cadaveric studies scored 81% according to the QUACS scale (Quality Appraisal for Cadaveric Studies). CONCLUSION This manuscript provides 1) a summary of the current state of knowledge and research of Augmented Reality in orthopedic surgery presented in the literature, and 2) a discussion by the authors presenting the key remarks required for seamless integration of Augmented Reality in the future surgical practice. TRIAL REGISTRATION PROSPERO registration number: CRD42019128569.
Collapse
Affiliation(s)
- Lukas Jud
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008 Zürich, Switzerland
| | - Javad Fotouhi
- Computer Aided Medical Procedure, Johns Hopkins University, 3400 N Charles Street, Baltimore, 21210 USA
| | - Octavian Andronic
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008 Zürich, Switzerland
| | - Alexander Aichmair
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008 Zürich, Switzerland
| | - Greg Osgood
- Johns Hopkins Hospital, Department of Orthopedics Surgery, 1800 Orleans Street, Baltimore, 21287 USA
| | - Nassir Navab
- Computer Aided Medical Procedure, Johns Hopkins University, 3400 N Charles Street, Baltimore, 21210 USA
- Computer Aided Medical Procedure, Technical University of Munich, Boltzmannstrasse 3, 85748 Munich, Germany
| | - Mazda Farshad
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008 Zürich, Switzerland
| |
Collapse
|
8
|
Laverdière C, Corban J, Khoury J, Ge SM, Schupbach J, Harvey EJ, Reindl R, Martineau PA. Augmented reality in orthopaedics. Bone Joint J 2019; 101-B:1479-1488. [DOI: 10.1302/0301-620x.101b12.bjj-2019-0315.r1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aims Computer-based applications are increasingly being used by orthopaedic surgeons in their clinical practice. With the integration of technology in surgery, augmented reality (AR) may become an important tool for surgeons in the future. By superimposing a digital image on a user’s view of the physical world, this technology shows great promise in orthopaedics. The aim of this review is to investigate the current and potential uses of AR in orthopaedics. Materials and Methods A systematic review of the PubMed, MEDLINE, and Embase databases up to January 2019 using the keywords ‘orthopaedic’ OR ‘orthopedic AND augmented reality’ was performed by two independent reviewers. Results A total of 41 publications were included after screening. Applications were divided by subspecialty: spine (n = 15), trauma (n = 16), arthroplasty (n = 3), oncology (n = 3), and sports (n = 4). Out of these, 12 were clinical in nature. AR-based technologies have a wide variety of applications, including direct visualization of radiological images by overlaying them on the patient and intraoperative guidance using preoperative plans projected onto real anatomy, enabling hands-free real-time access to operating room resources, and promoting telemedicine and education. Conclusion There is an increasing interest in AR among orthopaedic surgeons. Although studies show similar or better outcomes with AR compared with traditional techniques, many challenges need to be addressed before this technology is ready for widespread use. Cite this article: Bone Joint J 2019;101-B:1479–1488
Collapse
Affiliation(s)
- Carl Laverdière
- Department of Orthopedic Surgery, McGill University Health Centre, Montreal, Canada
| | - Jason Corban
- Department of Orthopedic Surgery, McGill University Health Centre, Montreal, Canada
| | - Jason Khoury
- Department of Orthopedic Surgery, McGill University Health Centre, Montreal, Canada
| | - Susan Mengxiao Ge
- Department of Orthopedic Surgery, McGill University Health Centre, Montreal, Canada
| | - Justin Schupbach
- Department of Orthopedic Surgery, McGill University Health Centre, Montreal, Canada
| | - Edward J. Harvey
- Department of Orthopedic Surgery, McGill University Health Centre, Montreal, Canada
| | - Rudy Reindl
- Department of Orthopedic Surgery, McGill University Health Centre, Montreal, Canada
| | - Paul A. Martineau
- Department of Orthopedic Surgery, McGill University Health Centre, Montreal, Canada
| |
Collapse
|
9
|
Mewes A, Heinrich F, Kägebein U, Hensen B, Wacker F, Hansen C. Projector-based augmented reality system for interventional visualization inside MRI scanners. Int J Med Robot 2018; 15:e1950. [DOI: 10.1002/rcs.1950] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/11/2018] [Accepted: 08/01/2018] [Indexed: 11/09/2022]
Affiliation(s)
- André Mewes
- Faculty of Computer Science; Otto von Guericke University Magdeburg; Magdeburg Germany
| | - Florian Heinrich
- Faculty of Computer Science; Otto von Guericke University Magdeburg; Magdeburg Germany
| | - Urte Kägebein
- Faculty of Computer Science; Otto von Guericke University Magdeburg; Magdeburg Germany
| | - Bennet Hensen
- Institute of Diagnostic and Interventional Radiology; Hannover Medical School; Hanover Germany
| | - Frank Wacker
- Institute of Diagnostic and Interventional Radiology; Hannover Medical School; Hanover Germany
| | - Christian Hansen
- Faculty of Computer Science; Otto von Guericke University Magdeburg; Magdeburg Germany
| |
Collapse
|
10
|
Racadio JM, Nachabe R, Homan R, Schierling R, Racadio JM, Babić D. Augmented Reality on a C-Arm System: A Preclinical Assessment for Percutaneous Needle Localization. Radiology 2016; 281:249-55. [PMID: 27089025 DOI: 10.1148/radiol.2016151040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- John M Racadio
- From the Department of Radiology, Division of Pediatric Interventional Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3030 (John Racadio, R.S., Judy Racadio); and Interventional X-Ray Department, Philips Healthcare, Best, the Netherlands (R.N., R.H., D.B.)
| | - Rami Nachabe
- From the Department of Radiology, Division of Pediatric Interventional Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3030 (John Racadio, R.S., Judy Racadio); and Interventional X-Ray Department, Philips Healthcare, Best, the Netherlands (R.N., R.H., D.B.)
| | - Robert Homan
- From the Department of Radiology, Division of Pediatric Interventional Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3030 (John Racadio, R.S., Judy Racadio); and Interventional X-Ray Department, Philips Healthcare, Best, the Netherlands (R.N., R.H., D.B.)
| | - Ross Schierling
- From the Department of Radiology, Division of Pediatric Interventional Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3030 (John Racadio, R.S., Judy Racadio); and Interventional X-Ray Department, Philips Healthcare, Best, the Netherlands (R.N., R.H., D.B.)
| | - Judy M Racadio
- From the Department of Radiology, Division of Pediatric Interventional Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3030 (John Racadio, R.S., Judy Racadio); and Interventional X-Ray Department, Philips Healthcare, Best, the Netherlands (R.N., R.H., D.B.)
| | - Draženko Babić
- From the Department of Radiology, Division of Pediatric Interventional Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3030 (John Racadio, R.S., Judy Racadio); and Interventional X-Ray Department, Philips Healthcare, Best, the Netherlands (R.N., R.H., D.B.)
| |
Collapse
|
11
|
Marker DR, U-Thainual P, Ungi T, Flammang AJ, Fichtinger G, Iordachita II, Carrino JA, Fritz J. MR-guided perineural injection of the ganglion impar: technical considerations and feasibility. Skeletal Radiol 2016; 45:591-7. [PMID: 26791162 DOI: 10.1007/s00256-016-2333-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/03/2016] [Accepted: 01/07/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Perineural ganglion impar injections are used in the management of pelvic pain syndromes; however, there is no consensus regarding the optimal image guidance. Magnetic resonance imaging (MRI) provides high soft tissue contrast and the potential to directly visualize and target the ganglion. The purpose of this study was to assess the feasibility of MR-guided percutaneous perineural ganglion impar injections. MATERIALS AND METHODS Six MR-guided ganglion impar injections were performed in six human cadavers. Procedures were performed with a clinical 1.5-Tesla MRI system through a far lateral transgluteus approach. Ganglion impar visibility, distance from the sacrococcygeal joint, number of intermittent MRI control steps required to place the needle, target error between the intended and final needle tip location, inadvertent punctures of non-targeted vulnerable structures, injectant distribution, and procedure time were determined. RESULTS The ganglion impar was seen on MRI in 4/6 (66 %) of cases and located 0.8 mm cephalad to 16.3 mm caudad (average 1.2 mm caudad) to the midpoint of the sacrococcygeal joint. Needle placement required an average of three MRI control steps (range, 2-6). The average target error was 2.2 ± 2.1 mm. In 6/6 cases (100 %), there was appropriate periganglionic distribution and filling of the presacrococcygeal space. No punctures of non-targeted structures occurred. The median procedure time was 20 min (range, 12-29 min). CONCLUSION Interventional MRI can visualize and directly target the ganglion impar for accurate needle placement and successful periganglionic injection with the additional benefit of no ionizing radiation exposure to patient and staff. Our results support clinical evaluation.
Collapse
Affiliation(s)
- David R Marker
- Russell H. Morgan Department of Radiology and Radiological Science, Musculoskeletal Radiology, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3140A, Baltimore, MD, 21287, USA
| | - Paweena U-Thainual
- Department of Mechanical and Materials Engineering, Queen's University, 99 University Avenue, Kingston, ON, Canada
| | - Tamas Ungi
- School of Computing, Queen's University, 557 Goodwin Hall, Queen's University, Kingston, ON, Canada
| | - Aaron J Flammang
- Siemens Corporate Research, Center for Applied Medical Imaging, Baltimore, MD, USA
| | - Gabor Fichtinger
- School of Computing, Queen's University, 557 Goodwin Hall, Queen's University, Kingston, ON, Canada
| | - Iulian I Iordachita
- Department of Mechanical Engineering and Laboratory for Computational Sensing and Robotics, Johns Hopkins University, 3400 N. Charles St., Hackerman 112, Baltimore, MD, 21218, USA
| | - John A Carrino
- Russell H. Morgan Department of Radiology and Radiological Science, Musculoskeletal Radiology, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3140A, Baltimore, MD, 21287, USA
| | - Jan Fritz
- Russell H. Morgan Department of Radiology and Radiological Science, Musculoskeletal Radiology, Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3140A, Baltimore, MD, 21287, USA.
| |
Collapse
|
12
|
MR-guided vertebroplasty with augmented reality image overlay navigation. Cardiovasc Intervent Radiol 2014; 37:1589-96. [PMID: 24722894 DOI: 10.1007/s00270-014-0885-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/16/2014] [Indexed: 12/26/2022]
Abstract
PURPOSE To evaluate the feasibility of magnetic resonance imaging (MRI)-guided vertebroplasty at 1.5 Tesla using augmented reality image overlay navigation. MATERIALS AND METHODS Twenty-five unilateral vertebroplasties [5 of 25 (20%) thoracic, 20 of 25 (80%) lumbar] were prospectively planned in 5 human cadavers. A clinical 1.5-Teslan MRI system was used. An augmented reality image overlay navigation system and 3D Slicer visualization software were used for MRI display, planning, and needle navigation. Intermittent MRI was used to monitor placement of the MRI-compatible vertebroplasty needle. Cement injections (3 ml of polymethylmethacrylate) were performed outside the bore. The cement deposits were assessed on intermediate-weighted MR images. Outcome variables included type of vertebral body access, number of required intermittent MRI control steps, location of final needle tip position, cement deposit location, and vertebroplasty time. RESULTS All planned procedures (25 of 25, 100%) were performed. Sixteen of 25 (64%) transpedicular and 9 of 25 (36%) parapedicular access routes were used. Six (range 3-9) MRI control steps were required for needle placement. No inadvertent punctures were visualized. Final needle tip position and cement location were adequate in all cases (25 of 25, 100%) with a target error of the final needle tip position of 6.1 ± 1.9 mm (range 0.3-8.7 mm) and a distance between the planned needle tip position and the center of the cement deposit of 4.3 mm (range 0.8-6.8 mm). Time requirement for one level was 16 (range 11-21) min. CONCLUSION MRI-guided vertebroplasty using image overlay navigation is feasible allowing for accurate vertebral body access and cement deposition in cadaveric thoracic and lumbar vertebral bodies.
Collapse
|