1
|
Rabe M, Paganelli C, Schmitz H, Meschini G, Riboldi M, Hofmaier J, Nierer-Kohlhase L, Dinkel J, Reiner M, Parodi K, Belka C, Landry G, Kurz C, Kamp F. Continuous time-resolved estimated synthetic 4D-CTs for dose reconstruction of lung tumor treatments at a 0.35 T MR-linac. Phys Med Biol 2023; 68:235008. [PMID: 37669669 DOI: 10.1088/1361-6560/acf6f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Objective.To experimentally validate a method to create continuous time-resolved estimated synthetic 4D-computed tomography datasets (tresCTs) based on orthogonal cine MRI data for lung cancer treatments at a magnetic resonance imaging (MRI) guided linear accelerator (MR-linac).Approach.A breathing porcine lung phantom was scanned at a CT scanner and 0.35 T MR-linac. Orthogonal cine MRI series (sagittal/coronal orientation) at 7.3 Hz, intersecting tumor-mimicking gelatin nodules, were deformably registered to mid-exhale 3D-CT and 3D-MRI datasets. The time-resolved deformation vector fields were extrapolated to 3D and applied to a reference synthetic 3D-CT image (sCTref), while accounting for breathing phase-dependent lung density variations, to create 82 s long tresCTs at 3.65 Hz. Ten tresCTs were created for ten tracked nodules with different motion patterns in two lungs. For each dataset, a treatment plan was created on the mid-exhale phase of a measured ground truth (GT) respiratory-correlated 4D-CT dataset with the tracked nodule as gross tumor volume (GTV). Each plan was recalculated on the GT 4D-CT, randomly sampled tresCT, and static sCTrefimages. Dose distributions for corresponding breathing phases were compared in gamma (2%/2 mm) and dose-volume histogram (DVH) parameter analyses.Main results.The mean gamma pass rate between all tresCT and GT 4D-CT dose distributions was 98.6%. The mean absolute relative deviations of the tresCT with respect to GT DVH parameters were 1.9%, 1.0%, and 1.4% for the GTVD98%,D50%, andD2%, respectively, 1.0% for the remaining nodulesD50%, and 1.5% for the lungV20Gy. The gamma pass rate for the tresCTs was significantly larger (p< 0.01), and the GTVD50%deviations with respect to the GT were significantly smaller (p< 0.01) than for the sCTref.Significance.The results suggest that tresCTs could be valuable for time-resolved reconstruction and intrafractional accumulation of the dose to the GTV for lung cancer patients treated at MR-linacs in the future.
Collapse
Affiliation(s)
- Moritz Rabe
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Chiara Paganelli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Henning Schmitz
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Giorgia Meschini
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Marco Riboldi
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| | - Jan Hofmaier
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lukas Nierer-Kohlhase
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Julien Dinkel
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center, German Center for Lung Research (DZL), Munich, Germany
| | - Michael Reiner
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Katia Parodi
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Florian Kamp
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Radiation Oncology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
2
|
Li P, Chen J, Nan D, Zou J, Lin D, Hu Y. Motion-Aligned 4D-MRI Reconstruction using Higher Degree Total Variation and Locally Low-Rank Regularization. Magn Reson Imaging 2022; 93:97-107. [DOI: 10.1016/j.mri.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
|
3
|
den Boer D, Veldman JK, van Tienhoven G, Bel A, van Kesteren Z. Evaluating differences in respiratory motion estimates during radiotherapy: a single planning 4DMRI versus daily 4DMRI. Radiat Oncol 2021; 16:188. [PMID: 34565384 PMCID: PMC8474826 DOI: 10.1186/s13014-021-01915-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background In radiotherapy, respiratory-induced tumor motion is typically measured using a single four-dimensional computed tomography acquisition (4DCT). Irregular breathing leads to inaccurate motion estimates, potentially resulting in undertreatment of the tumor and unnecessary dose to healthy tissue. The aim of the research was to determine if a daily pre-treatment 4DMRI-strategy led to a significantly improved motion estimate compared to single planning 4DMRI (with or without outlier rejection). Methods 4DMRI data sets from 10 healthy volunteers were acquired. The first acquisition simulated a planning MRI, the respiratory motion estimate (constructed from the respiratory signal, i.e. the 1D navigator) was compared to the respiratory signal in the subsequent scans (simulating 5–29 treatment fractions). The same procedure was performed using the first acquisition of each day as an estimate for the subsequent acquisitions that day (2 per day, 4–20 per volunteer), simulating a daily MRI strategy. This was done for three outlier strategies: no outlier rejection (NoOR); excluding 5% of the respiratory signal whilst minimizing the range (Min95) and excluding the datapoints outside the mean end-inhalation and end-exhalation positions (MeanIE). Results The planning MRI median motion estimates were 27 mm for NoOR, 18 mm for Min95, and 13 mm for MeanIE. The daily MRI median motion estimates were 29 mm for NoOR, 19 mm for Min95 and 15 mm for MeanIE. The percentage of time outside the motion estimate were for the planning MRI: 2%, 10% and 32% for NoOR, Min95 and MeanIE respectively. These values were reduced with the daily MRI strategy: 0%, 6% and 17%. Applying Min95 accounted for a 30% decrease in motion estimate compared to NoOR. Conclusion A daily MRI improved the estimation of respiratory motion as compared to a single 4D (planning) MRI significantly. Combining the Min95 technique with a daily 4DMRI resulted in a decrease of inclusion time of 6% with a 30% decrease of motion. Outlier rejection alone on a planning MRI often led to underestimation of the movement and could potentially lead to an underdosage. Trial registration: protocol W15_373#16.007 Supplementary Information The online version contains supplementary material available at 10.1186/s13014-021-01915-1.
Collapse
Affiliation(s)
- Duncan den Boer
- Department of Radiotherapy, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Johannes K Veldman
- Department of Radiotherapy, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Geertjan van Tienhoven
- Department of Radiotherapy, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Arjan Bel
- Department of Radiotherapy, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Zdenko van Kesteren
- Department of Radiotherapy, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Hino T, Tsunomori A, Fukumoto T, Hata A, Ueyama M, Kurosaki A, Yoneyama T, Nagatsuka S, Kudoh S, Hatabu H. Vector-Field dynamic X-ray (VF-DXR) using Optical Flow Method. Br J Radiol 2021; 95:20201210. [PMID: 34233474 DOI: 10.1259/bjr.20201210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVES To explore the feasibility of Vector-Field DXR (VF-DXR) using optical flow method (OFM). METHODS Five healthy volunteers and five COPD patients were studied. DXR was performed in the standing position using a prototype X-ray system (Konica Minolta Inc., Tokyo, Japan). During the examination, participants took several tidal breaths and one forced breath. DXR image file was converted to the videos with different frames per second (fps): 15 fps, 7.5 fps, five fps, three fps, and 1.5 fps. Pixel-value gradient was calculated by the serial change of pixel value, which was subsequently converted mathematically to motion vector using OFM. Color-coding map and vector projection into horizontal and vertical components were also tested. RESULTS Dynamic motion of lung and thorax was clearly visualized using VF-DXR with an optimal frame rate of 5 fps. Color-coding map and vector projection into horizontal and vertical components were also presented. VF-DXR technique was also applied in COPD patients. CONCLUSION The feasibility of VF-DXR was demonstrated with small number of healthy subjects and COPD patients. ADVANCES IN KNOWLEDGE A new Vector-Field Dynamic X-ray (VF-DXR) technique is feasible for dynamic visualization of lung, diaphragms, thoracic cage, and cardiac contour.
Collapse
Affiliation(s)
- Takuya Hino
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Akinori Tsunomori
- R&D Promotion Division, Healthcare Business Headquarters, Konica Minolta, Hachioji-shi, Tokyo, Japan
| | - Takenori Fukumoto
- R&D Promotion Division, Healthcare Business Headquarters, Konica Minolta, Hachioji-shi, Tokyo, Japan
| | - Akinori Hata
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Masako Ueyama
- Department of Health Care, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Atsuko Kurosaki
- Department of Diagnostic Radiology, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Tsutomu Yoneyama
- R&D Promotion Division, Healthcare Business Headquarters, Konica Minolta, Hachioji-shi, Tokyo, Japan
| | - Sumiya Nagatsuka
- R&D Promotion Division, Healthcare Business Headquarters, Konica Minolta, Hachioji-shi, Tokyo, Japan
| | - Shoji Kudoh
- Japan Anti-Tuberculosis Association, Chiyoda-ku, Tokyo, Japan
| | - Hiroto Hatabu
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Vergalasova I, Cai J. A modern review of the uncertainties in volumetric imaging of respiratory-induced target motion in lung radiotherapy. Med Phys 2020; 47:e988-e1008. [PMID: 32506452 DOI: 10.1002/mp.14312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy has become a critical component for the treatment of all stages and types of lung cancer, often times being the primary gateway to a cure. However, given that radiation can cause harmful side effects depending on how much surrounding healthy tissue is exposed, treatment of the lung can be particularly challenging due to the presence of moving targets. Careful implementation of every step in the radiotherapy process is absolutely integral for attaining optimal clinical outcomes. With the advent and now widespread use of stereotactic body radiation therapy (SBRT), where extremely large doses are delivered, accurate, and precise dose targeting is especially vital to achieve an optimal risk to benefit ratio. This has largely become possible due to the rapid development of image-guided technology. Although imaging is critical to the success of radiotherapy, it can often be plagued with uncertainties due to respiratory-induced target motion. There has and continues to be an immense research effort aimed at acknowledging and addressing these uncertainties to further our abilities to more precisely target radiation treatment. Thus, the goal of this article is to provide a detailed review of the prevailing uncertainties that remain to be investigated across the different imaging modalities, as well as to highlight the more modern solutions to imaging motion and their role in addressing the current challenges.
Collapse
Affiliation(s)
- Irina Vergalasova
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
6
|
Paganelli C, Whelan B, Peroni M, Summers P, Fast M, van de Lindt T, McClelland J, Eiben B, Keall P, Lomax T, Riboldi M, Baroni G. MRI-guidance for motion management in external beam radiotherapy: current status and future challenges. Phys Med Biol 2018; 63:22TR03. [PMID: 30457121 DOI: 10.1088/1361-6560/aaebcf] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High precision conformal radiotherapy requires sophisticated imaging techniques to aid in target localisation for planning and treatment, particularly when organ motion due to respiration is involved. X-ray based imaging is a well-established standard for radiotherapy treatments. Over the last few years, the ability of magnetic resonance imaging (MRI) to provide radiation-free images with high-resolution and superb soft tissue contrast has highlighted the potential of this imaging modality for radiotherapy treatment planning and motion management. In addition, these advantageous properties motivated several recent developments towards combined MRI radiation therapy treatment units, enabling in-room MRI-guidance and treatment adaptation. The aim of this review is to provide an overview of the state-of-the-art in MRI-based image guidance for organ motion management in external beam radiotherapy. Methodological aspects of MRI for organ motion management are reviewed and their application in treatment planning, in-room guidance and adaptive radiotherapy described. Finally, a roadmap for an optimal use of MRI-guidance is highlighted and future challenges are discussed.
Collapse
Affiliation(s)
- C Paganelli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy. Author to whom any correspondence should be addressed. www.cartcas.polimi.it
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Stemkens B, Paulson ES, Tijssen RHN. Nuts and bolts of 4D-MRI for radiotherapy. ACTA ACUST UNITED AC 2018; 63:21TR01. [DOI: 10.1088/1361-6560/aae56d] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Freedman JN, Collins DJ, Bainbridge H, Rank CM, Nill S, Kachelrieß M, Oelfke U, Leach MO, Wetscherek A. T2-Weighted 4D Magnetic Resonance Imaging for Application in Magnetic Resonance-Guided Radiotherapy Treatment Planning. Invest Radiol 2017; 52:563-573. [PMID: 28459800 PMCID: PMC5581953 DOI: 10.1097/rli.0000000000000381] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of this study was to develop and verify a method to obtain good temporal resolution T2-weighted 4-dimensional (4D-T2w) magnetic resonance imaging (MRI) by using motion information from T1-weighted 4D (4D-T1w) MRI, to support treatment planning in MR-guided radiotherapy. MATERIALS AND METHODS Ten patients with primary non-small cell lung cancer were scanned at 1.5 T axially with a volumetric T2-weighted turbo spin echo sequence gated to exhalation and a volumetric T1-weighted stack-of-stars spoiled gradient echo sequence with golden angle spacing acquired in free breathing. From the latter, 20 respiratory phases were reconstructed using the recently developed 4D joint MoCo-HDTV algorithm based on the self-gating signal obtained from the k-space center. Motion vector fields describing the respiratory cycle were obtained by deformable image registration between the respiratory phases and projected onto the T2-weighted image volume. The resulting 4D-T2w volumes were verified against the 4D-T1w volumes: an edge-detection method was used to measure the diaphragm positions; the locations of anatomical landmarks delineated by a radiation oncologist were compared and normalized mutual information was calculated to evaluate volumetric image similarity. RESULTS High-resolution 4D-T2w MRI was obtained. Respiratory motion was preserved on calculated 4D-T2w MRI, with median diaphragm positions being consistent with less than 6.6 mm (2 voxels) for all patients and less than 3.3 mm (1 voxel) for 9 of 10 patients. Geometrical positions were coherent between 4D-T1w and 4D-T2w MRI as Euclidean distances between all corresponding anatomical landmarks agreed to within 7.6 mm (Euclidean distance of 2 voxels) and were below 3.8 mm (Euclidean distance of 1 voxel) for 355 of 470 pairs of anatomical landmarks. Volumetric image similarity was commensurate between 4D-T1w and 4D-T2w MRI, as mean percentage differences in normalized mutual information (calculated over all respiratory phases and patients), between corresponding respiratory phases of 4D-T1w and 4D-T2w MRI and the tie-phase of 4D-T1w and 3-dimensional T2w MRI, were consistent to 0.41% ± 0.37%. Four-dimensional T2w MRI displayed tumor extent, structure, and position more clearly than corresponding 4D-T1w MRI, especially when mobile tumor sites were adjacent to organs at risk. CONCLUSIONS A methodology to obtain 4D-T2w MRI that retrospectively applies the motion information from 4D-T1w MRI to 3-dimensional T2w MRI was developed and verified. Four-dimensional T2w MRI can assist clinicians in delineating mobile lesions that are difficult to define on 4D-T1w MRI, because of poor tumor-tissue contrast.
Collapse
Affiliation(s)
- Joshua N. Freedman
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David J. Collins
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hannah Bainbridge
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher M. Rank
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simeon Nill
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Kachelrieß
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Oelfke
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin O. Leach
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Wetscherek
- From the *Joint Department of Physics, †CR UK Cancer Imaging Centre, and ‡Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; and §Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Yang YX, Teo SK, Van Reeth E, Tan CH, Tham IWK, Poh CL. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion. Med Phys 2016; 42:4484-96. [PMID: 26233178 DOI: 10.1118/1.4923167] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors' proposed approach. METHODS A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. RESULTS The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors' proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. CONCLUSIONS The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.
Collapse
Affiliation(s)
- Y X Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
| | - S-K Teo
- Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore 138632
| | - E Van Reeth
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
| | - C H Tan
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore 308433
| | - I W K Tham
- Department of Radiation Oncology, National University Cancer Institute, Singapore 119082
| | - C L Poh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
| |
Collapse
|
10
|
Bernatowicz K, Peroni M, Perrin R, Weber DC, Lomax A. Four-Dimensional Dose Reconstruction for Scanned Proton Therapy Using Liver 4DCT-MRI. Int J Radiat Oncol Biol Phys 2016; 95:216-223. [DOI: 10.1016/j.ijrobp.2016.02.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 02/09/2016] [Accepted: 02/17/2016] [Indexed: 01/01/2023]
|
11
|
Abstract
The use of magnetic resonance imaging (MRI) in radiotherapy (RT) planning is rapidly expanding. We review the wide range of image contrast mechanisms available to MRI and the way they are exploited for RT planning. However a number of challenges are also considered: the requirements that MR images are acquired in the RT treatment position, that they are geometrically accurate, that effects of patient motion during the scan are minimized, that tissue markers are clearly demonstrated, that an estimate of electron density can be obtained. These issues are discussed in detail, prior to the consideration of a number of specific clinical applications. This is followed by a brief discussion on the development of real-time MRI-guided RT.
Collapse
Affiliation(s)
- Maria A Schmidt
- Cancer Research UK Cancer Imaging Centre, Royal Marsden Hospital and the Institute of Cancer Research, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | | |
Collapse
|
12
|
Golkar E, Rahni AAA. A composite registration framework for respiratory motion modelling from 4D MRI. 2015 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC) 2015. [DOI: 10.1109/nssmic.2015.7582229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
13
|
Golkar E, Rahni AAA, Sulaiman R. Comparison of intensity based deformable registration methods for respiratory motion modelling from 4D MRI. 2015 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (ICSIPA) 2015. [DOI: 10.1109/icsipa.2015.7412231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Abd. Rahni AA, Lewis E, Wells K. Inter-subject variability of respiratory motion from 4D MRI. 2015 INTERNATIONAL CONFERENCE ON BIOSIGNAL ANALYSIS, PROCESSING AND SYSTEMS (ICBAPS) 2015. [DOI: 10.1109/icbaps.2015.7292225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
15
|
Rahni AAA, Lewis E, Wells K. Quantication and analysis of respiratory motion from 4D MRI. JOURNAL OF PHYSICS: CONFERENCE SERIES 2014; 546:012001. [DOI: 10.1088/1742-6596/546/1/012001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
16
|
Medical image computing and image-based simulation: recent developments and advances in Germany. Int J Comput Assist Radiol Surg 2014; 9:341-3. [DOI: 10.1007/s11548-014-1073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|