1
|
Cai Y, Wu S, Fan X, Olson J, Evans L, Lollis S, Mirza SK, Paulsen KD, Ji S. A level-wise spine registration framework to account for large pose changes. Int J Comput Assist Radiol Surg 2021; 16:943-953. [PMID: 33973113 PMCID: PMC8358825 DOI: 10.1007/s11548-021-02395-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/29/2021] [Indexed: 11/27/2022]
Abstract
PURPOSES Accurate and efficient spine registration is crucial to success of spine image guidance. However, changes in spine pose cause intervertebral motion that can lead to significant registration errors. In this study, we develop a geometrical rectification technique via nonlinear principal component analysis (NLPCA) to achieve level-wise vertebral registration that is robust to large changes in spine pose. METHODS We used explanted porcine spines and live pigs to develop and test our technique. Each sample was scanned with preoperative CT (pCT) in an initial pose and rescanned with intraoperative stereovision (iSV) in a different surgical posture. Patient registration rectified arbitrary spinal postures in pCT and iSV into a common, neutral pose through a parameterized moving-frame approach. Topologically encoded depth projection 2D images were then generated to establish invertible point-to-pixel correspondences. Level-wise point correspondences between pCT and iSV vertebral surfaces were generated via 2D image registration. Finally, closed-form vertebral level-wise rigid registration was obtained by directly mapping 3D surface point pairs. Implanted mini-screws were used as fiducial markers to measure registration accuracy. RESULTS In seven explanted porcine spines and two live animal surgeries (maximum in-spine pose change of 87.5 mm and 32.7 degrees averaged from all spines), average target registration errors (TRE) of 1.70 ± 0.15 mm and 1.85 ± 0.16 mm were achieved, respectively. The automated spine rectification took 3-5 min, followed by an additional 30 secs for depth image projection and level-wise registration. CONCLUSIONS Accuracy and efficiency of the proposed level-wise spine registration support its application in human open spine surgeries. The registration framework, itself, may also be applicable to other intraoperative imaging modalities such as ultrasound and MRI, which may expand utility of the approach in spine registration in general.
Collapse
Affiliation(s)
- Yunliang Cai
- Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA, 01609, USA
| | - Shaoju Wu
- Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA, 01609, USA
| | - Xiaoyao Fan
- Dartmouth College Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, 03766, USA
| | - Jonathan Olson
- Dartmouth College Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, 03766, USA
| | - Linton Evans
- Dartmouth College Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, 03766, USA
| | - Scott Lollis
- University of Vermont Medical Center, Burlington, VT, 05401, USA
| | - Sohail K Mirza
- Dartmouth College Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, 03766, USA
| | - Keith D Paulsen
- Dartmouth College Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, 03766, USA
| | - Songbai Ji
- Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA, 01609, USA.
| |
Collapse
|
2
|
Pojskić M, Bopp M, Saß B, Kirschbaum A, Nimsky C, Carl B. Intraoperative Computed Tomography-Based Navigation with Augmented Reality for Lateral Approaches to the Spine. Brain Sci 2021; 11:brainsci11050646. [PMID: 34063546 PMCID: PMC8156391 DOI: 10.3390/brainsci11050646] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/23/2022] Open
Abstract
Background. Lateral approaches to the spine have gained increased popularity due to enabling minimally invasive access to the spine, less blood loss, decreased operative time, and less postoperative pain. The objective of the study was to analyze the use of intraoperative computed tomography with navigation and the implementation of augmented reality in facilitating a lateral approach to the spine. Methods. We prospectively analyzed all patients who underwent surgery with a lateral approach to the spine from September 2016 to January 2021 using intraoperative CT applying a 32-slice movable CT scanner, which was used for automatic navigation registration. Sixteen patients, with a median age of 64.3 years, were operated on using a lateral approach to the thoracic and lumbar spine and using intraoperative CT with navigation. Indications included a herniated disc (six patients), tumors (seven), instability following the fracture of the thoracic or lumbar vertebra (two), and spondylodiscitis (one). Results. Automatic registration, applying intraoperative CT, resulted in high accuracy (target registration error: 0.84 ± 0.10 mm). The effective radiation dose of the registration CT scans was 6.16 ± 3.91 mSv. In seven patients, a control iCT scan was performed for resection and implant control, with an ED of 4.51 ± 2.48 mSv. Augmented reality (AR) was used to support surgery in 11 cases, by visualizing the tumor outline, pedicle screws, herniated discs, and surrounding structures. Of the 16 patients, corpectomy was performed in six patients with the implantation of an expandable cage, and one patient underwent discectomy using the XLIF technique. One patient experienced perioperative complications. One patient died in the early postoperative course due to severe cardiorespiratory failure. Ten patients had improved and five had unchanged neurological status at the 3-month follow up. Conclusions. Intraoperative computed tomography with navigation facilitates the application of lateral approaches to the spine for a variety of indications, including fusion procedures, tumor resection, and herniated disc surgery.
Collapse
Affiliation(s)
- Mirza Pojskić
- Department of Neurosurgery, University of Marburg, Baldingerstraße, 35043 Marburg, Germany; (M.B.); (B.S.); (C.N.); (B.C.)
- Correspondence: ; Tel.: +49-64215869848
| | - Miriam Bopp
- Department of Neurosurgery, University of Marburg, Baldingerstraße, 35043 Marburg, Germany; (M.B.); (B.S.); (C.N.); (B.C.)
- Marburg Center for Mind, Brain and Behavior (MCMBB), 35043 Marburg, Germany
| | - Benjamin Saß
- Department of Neurosurgery, University of Marburg, Baldingerstraße, 35043 Marburg, Germany; (M.B.); (B.S.); (C.N.); (B.C.)
| | - Andreas Kirschbaum
- Department of Visceral, Thoracic and Vascular Surgery, University of Marburg, 35043 Marburg, Germany;
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Baldingerstraße, 35043 Marburg, Germany; (M.B.); (B.S.); (C.N.); (B.C.)
- Marburg Center for Mind, Brain and Behavior (MCMBB), 35043 Marburg, Germany
| | - Barbara Carl
- Department of Neurosurgery, University of Marburg, Baldingerstraße, 35043 Marburg, Germany; (M.B.); (B.S.); (C.N.); (B.C.)
- Department of Neurosurgery, Helios Dr. Horst Schmidt Kliniken, 65199 Wiesbaden, Germany
| |
Collapse
|
3
|
Carl B, Bopp M, Saß B, Pojskic M, Gjorgjevski M, Voellger B, Nimsky C. Reliable navigation registration in cranial and spine surgery based on intraoperative computed tomography. Neurosurg Focus 2019; 47:E11. [DOI: 10.3171/2019.8.focus19621] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/26/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVELow registration errors are an important prerequisite for reliable navigation, independent of its use in cranial or spinal surgery. Regardless of whether navigation is used for trajectory alignment in biopsy or implant procedures, or for sophisticated augmented reality applications, all depend on a correct registration of patient space and image space. In contrast to fiducial, landmark, or surface matching–based registration, the application of intraoperative imaging allows user-independent automatic patient registration, which is less error prone. The authors’ aim in this paper was to give an overview of their experience using intraoperative CT (iCT) scanning for automatic registration with a focus on registration accuracy and radiation exposure.METHODSA total of 645 patients underwent iCT scanning with a 32-slice movable CT scanner in combination with navigation for trajectory alignment in biopsy and implantation procedures (n = 222) and for augmented reality (n = 437) in cranial and spine procedures (347 craniotomies and 42 transsphenoidal, 56 frameless stereotactic, 59 frame-based stereotactic, and 141 spinal procedures). The target registration error was measured using skin fiducials that were not part of the registration procedure. The effective dose was calculated by multiplying the dose length product with conversion factors.RESULTSAmong all 1281 iCT scans obtained, 1172 were used for automatic patient registration (645 initial registration scans and 527 repeat iCT scans). The overall mean target registration error was 0.86 ± 0.38 mm (± SD) (craniotomy, 0.88 ± 0.39 mm; transsphenoidal, 0.92 ± 0.39 mm; frameless, 0.74 ± 0.39 mm; frame-based, 0.84 ± 0.34 mm; and spinal, 0.80 ± 0.28 mm). Compared with standard diagnostic scans, a distinct reduction of the effective dose could be achieved using low-dose protocols for the initial registration scan with mean effective doses of 0.06 ± 0.04 mSv for cranial, 0.50 ± 0.09 mSv for cervical, 4.12 ± 2.13 mSv for thoracic, and 3.37 ± 0.93 mSv for lumbar scans without impeding registration accuracy.CONCLUSIONSReliable automatic patient registration can be achieved using iCT scanning. Low-dose protocols ensured a low radiation exposure for the patient. Low-dose scanning had no negative effect on navigation accuracy.
Collapse
Affiliation(s)
- Barbara Carl
- 1Department of Neurosurgery, University of Marburg; and
| | - Miriam Bopp
- 1Department of Neurosurgery, University of Marburg; and
- 2Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| | - Benjamin Saß
- 1Department of Neurosurgery, University of Marburg; and
| | - Mirza Pojskic
- 1Department of Neurosurgery, University of Marburg; and
| | | | | | - Christopher Nimsky
- 1Department of Neurosurgery, University of Marburg; and
- 2Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| |
Collapse
|
4
|
Stammes MA, Bugby SL, Porta T, Pierzchalski K, Devling T, Otto C, Dijkstra J, Vahrmeijer AL, de Geus-Oei LF, Mieog JSD. Modalities for image- and molecular-guided cancer surgery. Br J Surg 2018; 105:e69-e83. [PMID: 29341161 DOI: 10.1002/bjs.10789] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/25/2017] [Accepted: 11/05/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Surgery is the cornerstone of treatment for many solid tumours. A wide variety of imaging modalities are available before surgery for staging, although surgeons still rely primarily on visual and haptic cues in the operating environment. Image and molecular guidance might improve the adequacy of resection through enhanced tumour definition and detection of aberrant deposits. Intraoperative modalities available for image- and molecular-guided cancer surgery are reviewed here. METHODS Intraoperative cancer detection techniques were identified through a systematic literature search, with selection of peer-reviewed publications from January 2012 to January 2017. Modalities were reviewed, described and compared according to 25 predefined characteristics. To summarize the data in a comparable way, a three-point rating scale was applied to quantitative characteristics. RESULTS The search identified ten image- and molecular-guided surgery techniques, which can be divided into four groups: conventional, optical, nuclear and endogenous reflectance modalities. Conventional techniques are the most well known imaging modalities, but unfortunately have the drawback of a defined resolution and long acquisition time. Optical imaging is a real-time modality; however, the penetration depth is limited. Nuclear modalities have excellent penetration depth, but their intraoperative use is limited by the use of radioactivity. Endogenous reflectance modalities provide high resolution, although with a narrow field of view. CONCLUSION Each modality has its strengths and weaknesses; no single technique will be suitable for all surgical procedures. Strict selection of modalities per cancer type and surgical requirements is required as well as combining techniques to find the optimal balance.
Collapse
Affiliation(s)
- M A Stammes
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.,Percuros, Enschede, The Netherlands
| | - S L Bugby
- Space Research Centre, Department of Physics and Astronomy, University of Leicester, Leicester, UK
| | - T Porta
- Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands
| | - K Pierzchalski
- Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands
| | | | - C Otto
- Medical Cell Bio Physics, University of Twente, Enschede, The Netherlands
| | - J Dijkstra
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - L-F de Geus-Oei
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.,Biomedical Photonic Imaging Group, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - J S D Mieog
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
5
|
Guha D, Yang VXD. Perspective review on applications of optics in spinal surgery. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-8. [PMID: 29893070 DOI: 10.1117/1.jbo.23.6.060601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Optical technologies may be applied to multiple facets of spinal surgery from diagnostics to intraoperative image guidance to therapeutics. In diagnostics, the current standard remains cross-sectional static imaging. Optical surface scanning tools may have an important role; however, significant work is required to clearly correlate surface metrics to radiographic and clinically relevant spinal anatomy and alignment. In the realm of intraoperative image guidance, optical tracking is widely developed as the current standard of instrument tracking, however remains compromised by line-of-sight issues and more globally cumbersome registration workflows. Surface scanning registration tools are being refined to address concerns over workflow and learning curves, and allow real-time update of tissue deformation; however, the line-of-sight issues plaguing instrument tracking remain to be addressed. In therapeutics, optical applications exist in both visualization, in the form of endoscopes, and ablation, in the form of lasers. Further work is required to extend the feasibility of laser ablation to multiple tissues, including disc, bone, and tumor, in a safe and time-efficient manner. Finally, we postulate some of the short- and long-term opportunities for future growth of optical techniques in the context of spinal surgery. Particular emphasis is placed on intraoperative image guidance, the area of the authors' primary expertise.
Collapse
Affiliation(s)
- Daipayan Guha
- University of Toronto, Division of Neurosurgery, Toronto, Ontario, Canada
| | - Victor X D Yang
- University of Toronto, Division of Neurosurgery, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Ryerson University, Bioengineering and Biophotonics Laboratory, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Kassab GS, An G, Sander EA, Miga MI, Guccione JM, Ji S, Vodovotz Y. Augmenting Surgery via Multi-scale Modeling and Translational Systems Biology in the Era of Precision Medicine: A Multidisciplinary Perspective. Ann Biomed Eng 2016; 44:2611-25. [PMID: 27015816 DOI: 10.1007/s10439-016-1596-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/18/2016] [Indexed: 12/18/2022]
Abstract
In this era of tremendous technological capabilities and increased focus on improving clinical outcomes, decreasing costs, and increasing precision, there is a need for a more quantitative approach to the field of surgery. Multiscale computational modeling has the potential to bridge the gap to the emerging paradigms of Precision Medicine and Translational Systems Biology, in which quantitative metrics and data guide patient care through improved stratification, diagnosis, and therapy. Achievements by multiple groups have demonstrated the potential for (1) multiscale computational modeling, at a biological level, of diseases treated with surgery and the surgical procedure process at the level of the individual and the population; along with (2) patient-specific, computationally-enabled surgical planning, delivery, and guidance and robotically-augmented manipulation. In this perspective article, we discuss these concepts, and cite emerging examples from the fields of trauma, wound healing, and cardiac surgery.
Collapse
Affiliation(s)
- Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, 92121, USA
| | - Gary An
- Department of Surgery, University of Chicago, Chicago, IL, 60637, USA
| | - Edward A Sander
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael I Miga
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Julius M Guccione
- Department of Surgery, University of California, San Francisco, CA, 94143, USA
| | - Songbai Ji
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.,Department of Surgery and of Orthopaedic Surgery, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA. .,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|