1
|
Wilcox S, Huang Z, Shah J, Yang X, Chen Y. Respiration-Induced Organ Motion Compensation: A Review. Ann Biomed Eng 2024:10.1007/s10439-024-03630-w. [PMID: 39384667 DOI: 10.1007/s10439-024-03630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
PURPOSE Motion of organs in the abdominal and thoracic cavity caused by respiration is a major issue that affects a wide range of clinical diagnoses or treatment outcomes, including radiotherapy, high-intensity focused ultrasound ablation, and many generalized percutaneous needle interventions. These motions pose significant challenges in accurately reaching the target even for the experienced clinician. METHODS This review was conducted through comprehensive search on IEEE Explore, Google Scholar, and PubMed. RESULTS Diverse methods have been proposed to compensate for this motion effect to enable effective surgical operations. This review paper aims to examine the current respiratory motion compensation techniques used across the clinical procedures of radiotherapy, high-intensity focused ultrasound, and percutaneous needle procedures. CONCLUSION The complexity of respiratory-induced organ motion and diversity of areas for which compensation can be applied allows for a variety of methods to be implemented. This review aims to serve as inspiration for the future development of new systems to achieve clinical relevance.
Collapse
Affiliation(s)
- Samuel Wilcox
- Institute of Robotics and Intelligent Machines, Georgia Institute of Technology, 801 Atlantic Dr NW, Atlanta, GA, 30332, USA
| | - Zhefeng Huang
- Institute of Robotics and Intelligent Machines, Georgia Institute of Technology, 801 Atlantic Dr NW, Atlanta, GA, 30332, USA
| | - Jay Shah
- Department of Radiology, Emory University, 1364 Clifton Rd, Atlanta, GA, 30329, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology, Emory University, 1364 Clifton Rd, Atlanta, GA, 30329, USA
| | - Yue Chen
- Institute of Robotics and Intelligent Machines, Georgia Institute of Technology, 801 Atlantic Dr NW, Atlanta, GA, 30332, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Dr STE 2127, Atlanta, GA, 30332, USA.
| |
Collapse
|
2
|
Msallem B, Veronesi L, Beyer M, Halbeisen FS, Maintz M, Franke A, Korn P, Dragu A, Thieringer FM. Evaluation of the Dimensional Accuracy of Robot-Guided Laser Osteotomy in Reconstruction with Patient-Specific Implants-An Accuracy Study of Digital High-Tech Procedures. J Clin Med 2024; 13:3594. [PMID: 38930123 PMCID: PMC11204867 DOI: 10.3390/jcm13123594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Background/Objective: With the rapid advancement in surgical technologies, new workflows for mandibular reconstruction are constantly being evaluated. Cutting guides are extensively employed for defining osteotomy planes but are prone to errors during fabrication and positioning. A virtually defined osteotomy plane and drilling holes in robotic surgery minimize potential sources of error and yield highly accurate outcomes. Methods: Ten mandibular replicas were evaluated after cutting-guided saw osteotomy and robot-guided laser osteotomy following reconstruction with patient-specific implants. The descriptive data analysis summarizes the mean, standard deviation (SD), median, minimum, maximum, and root mean square (RMS) values of the surface comparison for 3D printed models regarding trueness and precision. Results: The saw group had a median trueness RMS value of 2.0 mm (SD ± 1.7) and a precision of 1.6 mm (SD ± 1.4). The laser group had a median trueness RMS value of 1.2 mm (SD ± 1.1) and an equal precision of 1.6 mm (SD ± 1.4). These results indicate that robot-guided laser osteotomies have a comparable accuracy to cutting-guided saw osteotomies, even though there was a lack of statistical significance. Conclusions: Despite the limited sample size, this digital high-tech procedure has been shown to be potentially equivalent to the conventional osteotomy method. Robotic surgery and laser osteotomy offers enormous advantages, as they enable the seamless integration of precise virtual preoperative planning and exact execution in the human body, eliminating the need for surgical guides in the future.
Collapse
Affiliation(s)
- Bilal Msallem
- University Center for Orthopedics, Trauma and Plastic Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, DE-01307 Dresden, Germany;
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (L.V.); (M.B.); (M.M.); (F.M.T.)
| | - Lara Veronesi
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (L.V.); (M.B.); (M.M.); (F.M.T.)
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Michel Beyer
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (L.V.); (M.B.); (M.M.); (F.M.T.)
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Florian S. Halbeisen
- Surgical Outcome Research Center, Department of Clinical Research, University of Basel c/o University Hospital of Basel, CH-4001 Basel, Switzerland;
| | - Michaela Maintz
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (L.V.); (M.B.); (M.M.); (F.M.T.)
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, CH-4132 Muttenz, Switzerland
| | - Adrian Franke
- Department of Oral and Maxillofacial Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, DE-01307 Dresden, Germany; (A.F.); (P.K.)
| | - Paula Korn
- Department of Oral and Maxillofacial Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, DE-01307 Dresden, Germany; (A.F.); (P.K.)
| | - Adrian Dragu
- University Center for Orthopedics, Trauma and Plastic Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, DE-01307 Dresden, Germany;
| | - Florian M. Thieringer
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (L.V.); (M.B.); (M.M.); (F.M.T.)
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, CH-4031 Basel, Switzerland
| |
Collapse
|
3
|
Jivraj J, Deorajh R, Lai P, Chen C, Nguyen N, Ramjist J, Yang VXD. Robotic laser osteotomy through penscriptive structured light visual servoing. Int J Comput Assist Radiol Surg 2019; 14:809-818. [PMID: 30730030 DOI: 10.1007/s11548-018-01905-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/19/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE Planning osteotomies is a task that surgeons do as part of standard surgical workflow. This task, however, becomes more difficult and less intuitive when a robot is tasked with performing the osteotomy. In this study, we aim to provide a new method for surgeons to allow for highly intuitive trajectory planning, similar to the way an attending surgeon would instruct a junior. METHODS Planning an osteotomy, especially during a craniotomy, is performed intraoperatively using a sterile surgical pen or pencil directly on the exposed bone surface. This paper presents a new method for generating osteotomy trajectories for a multi-DOF robotic manipulator using the same method and relaying the penscribed cut path to the manipulator as a three-dimensional trajectory. The penscribed cut path is acquired using structured light imaging, and detection, segmentation, optimization and orientation generation of the Cartesian trajectory are done autonomously after minimal user input. RESULTS A 7-DOF manipulator (KUKA IIWA) is able to follow fully penscribed trajectories with sub-millimeter accuracy in the target plane and perpendicular to it (0.46 mm and 0.36 mm absolute mean error, respectively). CONCLUSIONS The robot is able to precisely follow cut paths drawn by the surgeon directly onto the exposed boney surface of the skull. We demonstrate through this study that current surgical workflow does not have to be drastically modified to introduce robotic technology in the operating room. We show that it is possible to guide a robot to perform an osteotomy in much the same way a senior surgeon would show a trainee by using a simple surgical pen or pencil.
Collapse
Affiliation(s)
- Jamil Jivraj
- Biophotonics & Bioengineering Laboratory, Department of Electrical & Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada.
| | - Ryan Deorajh
- Biophotonics & Bioengineering Laboratory, Department of Electrical & Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada
| | - Phillips Lai
- Biophotonics & Bioengineering Laboratory, Department of Electrical & Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada
| | - Chaoliang Chen
- Biophotonics & Bioengineering Laboratory, Department of Electrical & Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada
| | - Nhu Nguyen
- Biophotonics & Bioengineering Laboratory, Department of Electrical & Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada
| | - Joel Ramjist
- Biophotonics & Bioengineering Laboratory, Department of Electrical & Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada
| | - Victor X D Yang
- Biophotonics & Bioengineering Laboratory, Department of Electrical & Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, Canada
| |
Collapse
|