1
|
Zhuang X, Xu J, Luo X, Chen C, Ouyang C, Rueckert D, Campello VM, Lekadir K, Vesal S, RaviKumar N, Liu Y, Luo G, Chen J, Li H, Ly B, Sermesant M, Roth H, Zhu W, Wang J, Ding X, Wang X, Yang S, Li L. Cardiac segmentation on late gadolinium enhancement MRI: A benchmark study from multi-sequence cardiac MR segmentation challenge. Med Image Anal 2022; 81:102528. [PMID: 35834896 DOI: 10.1016/j.media.2022.102528] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/06/2021] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
Accurate computing, analysis and modeling of the ventricles and myocardium from medical images are important, especially in the diagnosis and treatment management for patients suffering from myocardial infarction (MI). Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) provides an important protocol to visualize MI. However, compared with the other sequences LGE CMR images with gold standard labels are particularly limited. This paper presents the selective results from the Multi-Sequence Cardiac MR (MS-CMR) Segmentation challenge, in conjunction with MICCAI 2019. The challenge offered a data set of paired MS-CMR images, including auxiliary CMR sequences as well as LGE CMR, from 45 patients who underwent cardiomyopathy. It was aimed to develop new algorithms, as well as benchmark existing ones for LGE CMR segmentation focusing on myocardial wall of the left ventricle and blood cavity of the two ventricles. In addition, the paired MS-CMR images could enable algorithms to combine the complementary information from the other sequences for the ventricle segmentation of LGE CMR. Nine representative works were selected for evaluation and comparisons, among which three methods are unsupervised domain adaptation (UDA) methods and the other six are supervised. The results showed that the average performance of the nine methods was comparable to the inter-observer variations. Particularly, the top-ranking algorithms from both the supervised and UDA methods could generate reliable and robust segmentation results. The success of these methods was mainly attributed to the inclusion of the auxiliary sequences from the MS-CMR images, which provide important label information for the training of deep neural networks. The challenge continues as an ongoing resource, and the gold standard segmentation as well as the MS-CMR images of both the training and test data are available upon registration via its homepage (www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mscmrseg/).
Collapse
Affiliation(s)
- Xiahai Zhuang
- School of Data Science, Fudan University, Shanghai, China. https://www.sdspeople.fudan.edu.cn/zhuangxiahai/?
| | - Jiahang Xu
- School of Data Science, Fudan University, Shanghai, China.
| | - Xinzhe Luo
- School of Data Science, Fudan University, Shanghai, China
| | - Chen Chen
- Biomedical Image Analysis Group, Imperial College London, London, UK
| | - Cheng Ouyang
- Biomedical Image Analysis Group, Imperial College London, London, UK
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Imperial College London, London, UK
| | - Victor M Campello
- Department Mathematics & Computer Science, Universitat de Barcelona, Barcelona, Spain
| | - Karim Lekadir
- Department Mathematics & Computer Science, Universitat de Barcelona, Barcelona, Spain
| | - Sulaiman Vesal
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | | - Yashu Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Gongning Luo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jingkun Chen
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Hongwei Li
- Department of Informatics, Technical University of Munich, Germany
| | - Buntheng Ly
- INRIA, Université Côte d'Azur, Sophia Antipolis, France
| | | | | | | | - Jiexiang Wang
- School of Informatics, Xiamen University, Xiamen, China
| | - Xinghao Ding
- School of Informatics, Xiamen University, Xiamen, China
| | - Xinyue Wang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Sen Yang
- College of Electrical Engineering, Sichuan University, Chengdu, China; Tencent AI Lab, Shenzhen, China
| | - Lei Li
- School of Data Science, Fudan University, Shanghai, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|