1
|
de Zwart B, Ruis C. An update on tests used for intraoperative monitoring of cognition during awake craniotomy. Acta Neurochir (Wien) 2024; 166:204. [PMID: 38713405 PMCID: PMC11076349 DOI: 10.1007/s00701-024-06062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE Mapping higher-order cognitive functions during awake brain surgery is important for cognitive preservation which is related to postoperative quality of life. A systematic review from 2018 about neuropsychological tests used during awake craniotomy made clear that until 2017 language was most often monitored and that the other cognitive domains were underexposed (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). The field of awake craniotomy and cognitive monitoring is however developing rapidly. The aim of the current review is therefore, to investigate whether there is a change in the field towards incorporation of new tests and more complete mapping of (higher-order) cognitive functions. METHODS We replicated the systematic search of the study from 2018 in PubMed and Embase from February 2017 to November 2023, yielding 5130 potentially relevant articles. We used the artificial machine learning tool ASReview for screening and included 272 papers that gave a detailed description of the neuropsychological tests used during awake craniotomy. RESULTS Comparable to the previous study of 2018, the majority of studies (90.4%) reported tests for assessing language functions (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). Nevertheless, an increasing number of studies now also describe tests for monitoring visuospatial functions, social cognition, and executive functions. CONCLUSIONS Language remains the most extensively tested cognitive domain. However, a broader range of tests are now implemented during awake craniotomy and there are (new developed) tests which received more attention. The rapid development in the field is reflected in the included studies in this review. Nevertheless, for some cognitive domains (e.g., executive functions and memory), there is still a need for developing tests that can be used during awake surgery.
Collapse
Affiliation(s)
- Beleke de Zwart
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands.
| | - Carla Ruis
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Tamura M, Kurihara H, Saito T, Nitta M, Maruyama T, Tsuzuki S, Fukui A, Koriyama S, Kawamata T, Muragaki Y. Combining Pre-operative Diffusion Tensor Images and Intraoperative Magnetic Resonance Images in the Navigation Is Useful for Detecting White Matter Tracts During Glioma Surgery. Front Neurol 2022; 12:805952. [PMID: 35126299 PMCID: PMC8812689 DOI: 10.3389/fneur.2021.805952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose We developed a navigation system that superimposes the fractional anisotropy (FA) color map of pre-operative diffusion tensor imaging (DTI) and intraoperative magnetic resonance imaging (MRI). The current study aimed to investigate the usefulness of this system for neurophysiological monitoring and examination under awake craniotomy during tumor removal. Method A total of 10 glioma patients (4 patients with right-side tumors; 5 men and 5 women; average age, 34 years) were evaluated. Among them, the tumor was localized to the frontal lobe, insular cortex, and parietal lobe in 8, 1, and 1 patient, respectively. There were 3 patients who underwent surgery on general anesthesia, while 7 patients underwent awake craniotomy. The index of DTI anisotropy taken pre-operatively (magnetic field: 3 tesla, 6 motion probing gradient directions) was analyzed as a color map (FA color map) and concurrently co-registered in the intraoperative MRI within the navigation. In addition to localization of the bipolar coagulator and the cortical stimulator for brain mapping on intraoperative MRI, the pre-operative FA color map was also concurrently integrated and displayed on the navigation monitor. This white matter nerve functional information was confirmed directly by using neurological examination and referring to the electrophysiological monitoring. Results Intraoperative MRI, integrated pre-operative FA color map, and microscopic surgical view were displayed on one screen in all 10 patients, and white matter fibers including the pyramidal tract were displayed as a reference in blue. Regarding motor function, motor-evoked potential was monitored as appropriate in all cases, and removal was possible while directly confirming motor symptoms under awake craniotomy. Furthermore, the white matter fibers including the superior longitudinal fasciculus were displayed in green. Importantly, it was useful not only to localize the resection site, but to identify language-related, eye movement-related, and motor fibers at the electrical stimulation site. All motor and/or language white matter tracts were identified and visualized with the co-registration and then with an acceptable post-operative neurological outcome. Conclusion Co-registering an intraoperative MR images and a pre-operative FA color map is a practical and useful method to predict the localization of critical white matter nerve functions intraoperatively in glioma surgery.
Collapse
Affiliation(s)
- Manabu Tamura
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroyuki Kurihara
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Taiichi Saito
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayuki Nitta
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Maruyama
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Shunsuke Tsuzuki
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Fukui
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Shunichi Koriyama
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshihiro Muragaki
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
- *Correspondence: Yoshihiro Muragaki
| |
Collapse
|
3
|
Detecting small conflicting drainages with contrast-enhanced magnetic resonance venography for surgical planning: a technical description and quantified analysis. Acta Neurochir (Wien) 2020; 162:2519-2526. [PMID: 32322998 DOI: 10.1007/s00701-020-04345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Recent studies have shown the challenges involved in detecting small conflicting vessels (1.0-1.5 mm) on contrast-enhanced (CE) T1 images during stereoelectroencephalography (SEEG) planning. Improving the resolution of non-invasive approaches to identify these vessels is possible and important. We present a superior sagittal sinus mapping-based CE-magnetic resonance venography (CE-MRV) protocol calibrated by craniotomies. METHOD Seven patients with epileptic symptoms who received craniotomy were enrolled. CE-MRV was acquired with a bolus mapping of the superior sagittal sinus. Together with the T1 image, 3D veins and the brain surface were visualized. The resolution of the CE-MRV was quantified by measuring the diameter of superficial drainages after exposure of the brain surface during craniotomy. RESULTS A total of 37 superficial drainages were exposed in the bone windows. CE-MRV visualized all these drainages. On average, one superficial drainage could be found in every 13.2 mm diameter of the bone window. The boundary resolution of the CE-MRV was 0.58-0.8 mm in vessel diameter, while drainages larger than 0.8 mm were visualized consistently. CONCLUSIONS The resolution of the CE-MRV in the present study met the requirement for detection of small conflicting vessels during SEEG planning. The visualized venous landmarks could be used for visual guidance to the surgical zone. As a non-invasive approach, CE-MRV is practical to use in the clinical setting.
Collapse
|