1
|
Maier-Hein L, Eisenmann M, Sarikaya D, März K, Collins T, Malpani A, Fallert J, Feussner H, Giannarou S, Mascagni P, Nakawala H, Park A, Pugh C, Stoyanov D, Vedula SS, Cleary K, Fichtinger G, Forestier G, Gibaud B, Grantcharov T, Hashizume M, Heckmann-Nötzel D, Kenngott HG, Kikinis R, Mündermann L, Navab N, Onogur S, Roß T, Sznitman R, Taylor RH, Tizabi MD, Wagner M, Hager GD, Neumuth T, Padoy N, Collins J, Gockel I, Goedeke J, Hashimoto DA, Joyeux L, Lam K, Leff DR, Madani A, Marcus HJ, Meireles O, Seitel A, Teber D, Ückert F, Müller-Stich BP, Jannin P, Speidel S. Surgical data science - from concepts toward clinical translation. Med Image Anal 2022; 76:102306. [PMID: 34879287 PMCID: PMC9135051 DOI: 10.1016/j.media.2021.102306] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 02/06/2023]
Abstract
Recent developments in data science in general and machine learning in particular have transformed the way experts envision the future of surgery. Surgical Data Science (SDS) is a new research field that aims to improve the quality of interventional healthcare through the capture, organization, analysis and modeling of data. While an increasing number of data-driven approaches and clinical applications have been studied in the fields of radiological and clinical data science, translational success stories are still lacking in surgery. In this publication, we shed light on the underlying reasons and provide a roadmap for future advances in the field. Based on an international workshop involving leading researchers in the field of SDS, we review current practice, key achievements and initiatives as well as available standards and tools for a number of topics relevant to the field, namely (1) infrastructure for data acquisition, storage and access in the presence of regulatory constraints, (2) data annotation and sharing and (3) data analytics. We further complement this technical perspective with (4) a review of currently available SDS products and the translational progress from academia and (5) a roadmap for faster clinical translation and exploitation of the full potential of SDS, based on an international multi-round Delphi process.
Collapse
Affiliation(s)
- Lena Maier-Hein
- Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany.
| | - Matthias Eisenmann
- Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Duygu Sarikaya
- Department of Computer Engineering, Faculty of Engineering, Gazi University, Ankara, Turkey; LTSI, Inserm UMR 1099, University of Rennes 1, Rennes, France
| | - Keno März
- Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Anand Malpani
- The Malone Center for Engineering in Healthcare, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Hubertus Feussner
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stamatia Giannarou
- The Hamlyn Centre for Robotic Surgery, Imperial College London, London, United Kingdom
| | - Pietro Mascagni
- ICube, University of Strasbourg, CNRS, France; IHU Strasbourg, Strasbourg, France
| | | | - Adrian Park
- Department of Surgery, Anne Arundel Health System, Annapolis, Maryland, USA; Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carla Pugh
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Danail Stoyanov
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom
| | - Swaroop S Vedula
- The Malone Center for Engineering in Healthcare, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Kevin Cleary
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, D.C., USA
| | | | - Germain Forestier
- L'Institut de Recherche en Informatique, Mathématiques, Automatique et Signal (IRIMAS), University of Haute-Alsace, Mulhouse, France; Faculty of Information Technology, Monash University, Clayton, Victoria, Australia
| | - Bernard Gibaud
- LTSI, Inserm UMR 1099, University of Rennes 1, Rennes, France
| | - Teodor Grantcharov
- University of Toronto, Toronto, Ontario, Canada; The Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Makoto Hashizume
- Kyushu University, Fukuoka, Japan; Kitakyushu Koga Hospital, Fukuoka, Japan
| | - Doreen Heckmann-Nötzel
- Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hannes G Kenngott
- Department for General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Ron Kikinis
- Department of Radiology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Nassir Navab
- Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany; Department of Computer Science, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Sinan Onogur
- Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Roß
- Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Raphael Sznitman
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Russell H Taylor
- Department of Computer Science, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Minu D Tizabi
- Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Wagner
- Department for General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Gregory D Hager
- The Malone Center for Engineering in Healthcare, The Johns Hopkins University, Baltimore, Maryland, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Thomas Neumuth
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
| | - Nicolas Padoy
- ICube, University of Strasbourg, CNRS, France; IHU Strasbourg, Strasbourg, France
| | - Justin Collins
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Hospital, Leipzig, Germany
| | - Jan Goedeke
- Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Daniel A Hashimoto
- University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA; Surgical AI and Innovation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Luc Joyeux
- My FetUZ Fetal Research Center, Department of Development and Regeneration, Biomedical Sciences, KU Leuven, Leuven, Belgium; Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium; Department of Obstetrics and Gynecology, Division Woman and Child, Fetal Medicine Unit, University Hospitals Leuven, Leuven, Belgium; Michael E. DeBakey Department of Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Kyle Lam
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Daniel R Leff
- Department of BioSurgery and Surgical Technology, Imperial College London, London, United Kingdom; Hamlyn Centre for Robotic Surgery, Imperial College London, London, United Kingdom; Breast Unit, Imperial Healthcare NHS Trust, London, United Kingdom
| | - Amin Madani
- Department of Surgery, University Health Network, Toronto, Ontario, Canada
| | - Hani J Marcus
- National Hospital for Neurology and Neurosurgery, and UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Ozanan Meireles
- Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander Seitel
- Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dogu Teber
- Department of Urology, City Hospital Karlsruhe, Karlsruhe, Germany
| | - Frank Ückert
- Institute for Applied Medical Informatics, Hamburg University Hospital, Hamburg, Germany
| | - Beat P Müller-Stich
- Department for General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Pierre Jannin
- LTSI, Inserm UMR 1099, University of Rennes 1, Rennes, France
| | - Stefanie Speidel
- Division of Translational Surgical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop (CeTI), TU Dresden, Dresden, Germany
| |
Collapse
|