1
|
Fechter T, Sachpazidis I, Baltas D. The use of deep learning in interventional radiotherapy (brachytherapy): A review with a focus on open source and open data. Z Med Phys 2024; 34:180-196. [PMID: 36376203 PMCID: PMC11156786 DOI: 10.1016/j.zemedi.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
Deep learning advanced to one of the most important technologies in almost all medical fields. Especially in areas, related to medical imaging it plays a big role. However, in interventional radiotherapy (brachytherapy) deep learning is still in an early phase. In this review, first, we investigated and scrutinised the role of deep learning in all processes of interventional radiotherapy and directly related fields. Additionally, we summarised the most recent developments. For better understanding, we provide explanations of key terms and approaches to solving common deep learning problems. To reproduce results of deep learning algorithms both source code and training data must be available. Therefore, a second focus of this work is on the analysis of the availability of open source, open data and open models. In our analysis, we were able to show that deep learning plays already a major role in some areas of interventional radiotherapy, but is still hardly present in others. Nevertheless, its impact is increasing with the years, partly self-propelled but also influenced by closely related fields. Open source, data and models are growing in number but are still scarce and unevenly distributed among different research groups. The reluctance in publishing code, data and models limits reproducibility and restricts evaluation to mono-institutional datasets. The conclusion of our analysis is that deep learning can positively change the workflow of interventional radiotherapy but there is still room for improvements when it comes to reproducible results and standardised evaluation methods.
Collapse
Affiliation(s)
- Tobias Fechter
- Division of Medical Physics, Department of Radiation Oncology, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany.
| | - Ilias Sachpazidis
- Division of Medical Physics, Department of Radiation Oncology, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Dimos Baltas
- Division of Medical Physics, Department of Radiation Oncology, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| |
Collapse
|
2
|
Zhao JZ, Ni R, Chow R, Rink A, Weersink R, Croke J, Raman S. Artificial intelligence applications in brachytherapy: A literature review. Brachytherapy 2023; 22:429-445. [PMID: 37248158 DOI: 10.1016/j.brachy.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE Artificial intelligence (AI) has the potential to simplify and optimize various steps of the brachytherapy workflow, and this literature review aims to provide an overview of the work done in this field. METHODS AND MATERIALS We conducted a literature search in June 2022 on PubMed, Embase, and Cochrane for papers that proposed AI applications in brachytherapy. RESULTS A total of 80 papers satisfied inclusion/exclusion criteria. These papers were categorized as follows: segmentation (24), registration and image processing (6), preplanning (13), dose prediction and treatment planning (11), applicator/catheter/needle reconstruction (16), and quality assurance (10). AI techniques ranged from classical models such as support vector machines and decision tree-based learning to newer techniques such as U-Net and deep reinforcement learning, and were applied to facilitate small steps of a process (e.g., optimizing applicator selection) or even automate the entire step of the workflow (e.g., end-to-end preplanning). Many of these algorithms demonstrated human-level performance and offer significant improvements in speed. CONCLUSIONS AI has potential to augment, automate, and/or accelerate many steps of the brachytherapy workflow. We recommend that future studies adhere to standard reporting guidelines. We also stress the importance of using larger sample sizes and reporting results using clinically interpretable measures.
Collapse
Affiliation(s)
- Jonathan Zl Zhao
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Ruiyan Ni
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Ronald Chow
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Alexandra Rink
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Robert Weersink
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Jennifer Croke
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Srinivas Raman
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Song WY, Robar JL, Morén B, Larsson T, Carlsson Tedgren Å, Jia X. Emerging technologies in brachytherapy. Phys Med Biol 2021; 66. [PMID: 34710856 DOI: 10.1088/1361-6560/ac344d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023]
Abstract
Brachytherapy is a mature treatment modality. The literature is abundant in terms of review articles and comprehensive books on the latest established as well as evolving clinical practices. The intent of this article is to part ways and look beyond the current state-of-the-art and review emerging technologies that are noteworthy and perhaps may drive the future innovations in the field. There are plenty of candidate topics that deserve a deeper look, of course, but with practical limits in this communicative platform, we explore four topics that perhaps is worthwhile to review in detail at this time. First, intensity modulated brachytherapy (IMBT) is reviewed. The IMBT takes advantage ofanisotropicradiation profile generated through intelligent high-density shielding designs incorporated onto sources and applicators such to achieve high quality plans. Second, emerging applications of 3D printing (i.e. additive manufacturing) in brachytherapy are reviewed. With the advent of 3D printing, interest in this technology in brachytherapy has been immense and translation swift due to their potential to tailor applicators and treatments customizable to each individual patient. This is followed by, in third, innovations in treatment planning concerning catheter placement and dwell times where new modelling approaches, solution algorithms, and technological advances are reviewed. And, fourth and lastly, applications of a new machine learning technique, called deep learning, which has the potential to improve and automate all aspects of brachytherapy workflow, are reviewed. We do not expect that all ideas and innovations reviewed in this article will ultimately reach clinic but, nonetheless, this review provides a decent glimpse of what is to come. It would be exciting to monitor as IMBT, 3D printing, novel optimization algorithms, and deep learning technologies evolve over time and translate into pilot testing and sensibly phased clinical trials, and ultimately make a difference for cancer patients. Today's fancy is tomorrow's reality. The future is bright for brachytherapy.
Collapse
Affiliation(s)
- William Y Song
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - James L Robar
- Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Björn Morén
- Department of Mathematics, Linköping University, Linköping, Sweden
| | - Torbjörn Larsson
- Department of Mathematics, Linköping University, Linköping, Sweden
| | - Åsa Carlsson Tedgren
- Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology Pathology, Karolinska Institute, Stockholm, Sweden
| | - Xun Jia
- Innovative Technology Of Radiotherapy Computations and Hardware (iTORCH) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|