1
|
Wang C, Sun Y, Yang X, Wang Z, Xiang S, Huang Z, Liang Y. Transcriptional analysis provides molecular insights into degeneration of the edible fungus Flammulina filiformis. J Appl Microbiol 2025; 136:lxaf039. [PMID: 39979020 DOI: 10.1093/jambio/lxaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/08/2025] [Accepted: 02/19/2025] [Indexed: 02/22/2025]
Abstract
AIMS Flammulina filiformis, a widely cultivated edible fungus, frequently suffers from strain degeneration, leading to reduce yield and quality, and causing significant economic losses in large-scale production. This study aimed to better understand degeneration mechanisms and to develop an assay for predicting degeneration. METHODS AND RESULTS This study investigates strain degeneration by comparing a cultivated strain (F1) and its subcultured derivative (F7). Although both strains display similar mycelial growth, F7 shows impaired fruiting body production, indicating that degeneration occurs prior to visible changes in mycelial growth. To uncover the molecular mechanisms underlying degeneration, transcriptome analysis was carried out. A total of 352 down-regulated and 280 up-regulated differentially expressed genes (DEGs) were identified in F7 compared to F1. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed significant enrichment of DEGs in functional categories related to oxidoreductase activities and peroxisome pathway. Quantitative PCR further validated the regulation of certain DEGs associated with these enriched functions. A stress tolerance assay was developed to detect degeneration in strains with unchanged mycelial growth but reduced fruiting body production. CONCLUSIONS Results suggested that strain degeneration in F. filiformis is closely linked to oxidative stress regulation and occurs prior to observable mycelial impairment.
Collapse
Affiliation(s)
- Caiyi Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yu Sun
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xinyu Yang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zehao Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shibo Xiang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhuqing Huang
- Shenyang Hengsheng Biotechnology Development Co., Ltd., Shenyang, Liaoning 110500, China
| | - Yue Liang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| |
Collapse
|
2
|
Zhang B, Wei X, Xi L, Qiao Y, Chang M, Deng B, Liu J. Genome-wide identification of the MYB gene family and FfMYB13 regulation analysis in cell wall synthesis underlying tissue toughening process of yellow Flammulina filiformis stipes. Int J Biol Macromol 2025; 288:138660. [PMID: 39672422 DOI: 10.1016/j.ijbiomac.2024.138660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
MYB transcription factors (TFs) play important roles in fungal growth, development, stress response, and secondary metabolism. Cell wall glycan remodeling induced by oxidative damage levels is vital for stipe quality during mature stage of yellow Flammulina filiformis fruiting bodies. In this study, we identified 15 F. filiformis MYB (FfMYB) that are ranging from 28.43 kDa-172.3 kDa, with an average of 73.51 kDa. These FfMYB genes were unevenly distributed among six chromosomes. Phylogenetic analysis indicated that 15 FfMYBs were closely related to existing model fungi, while they were more distant from Arabidopsis thaliana. Based on expression analysis, a MYB TF termed FfMYB13 were isolated and identified as a potential regulator binding the promoter of Ff-FeSOD1, which was negatively correlated with tissue toughening of yellow F. filiformis stipes. The data of DAP-seq analysis suggested that the downstream target genes of FfMYB13 were significantly enriched in cell wall metabolism. The result of EMSA and dual luciferase report experiments demonstrated that FfMYB13 served as an upstream transcriptional regulatory factor that activates four cell wall synthesis metabolism related genes, FfKRE6, Ffgas1, FfHYD-1, and FfGFA1. Moreover, FfMYB13 might negatively influence tissue toughening in the inhibition of oxidative damage by activating Ff-FeSOD1.
Collapse
Affiliation(s)
- Benfeng Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Key Laboratory of Shanxi Province for Loess Plateau Edible Fungi, Taigu 030801, Shanxi, China
| | - Xuyang Wei
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Linhao Xi
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yingli Qiao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Shanxi Engineering Research Center of Edible Fungi, Taigu 030801, Shanxi, China
| | - Bing Deng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Key Laboratory of Shanxi Province for Loess Plateau Edible Fungi, Taigu 030801, Shanxi, China.
| | - Jingyu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Key Laboratory of Shanxi Province for Loess Plateau Edible Fungi, Taigu 030801, Shanxi, China.
| |
Collapse
|
3
|
Liu Z, Cong Y, Sossah FL, Sheng H, Li Y. Identification of bacterial communities associated with needle mushroom ( Flammulina filiformis) and its production environment. Front Microbiol 2024; 15:1429213. [PMID: 39741595 PMCID: PMC11685130 DOI: 10.3389/fmicb.2024.1429213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
Flammulina filiformis is an important edible and medicinal mushroom widely cultivated in East Asia, with its quality and health strongly influenced by associated microbial communities. However, limited data exist on the bacterial communities associated with F. filiformis cultivation in Chinese farms. This study investigated bacterial communities associated with F. filiformis and its production environment using high-throughput 16S rRNA gene amplicon sequencing and culture-dependent methods. A total of 42 samples were collected from farms in Jilin and Guizhou provinces, China, for microbial community profiling. The analysis revealed diverse bacterial phyla, including Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Cyanobacteria. Genera such as Pseudomonas, Lactobacillus, Acinetobacter, Flavobacterium, and Phyllobacterium were identified, with notable regional variations in the relative abundance of Pseudomonas and Lactobacillus. Pathogenic species, including Pseudomonas tolaasii, Ewingella americana, Stenotrophomonas maltophilia, Pseudomonas sp., Lelliottia amnigena, and Janthinobacterium lividum, were identified through phenotypic, biochemical, and molecular analyses. Pathogenicity tests confirmed the disease-causing potential of P. tolaasii, E. americana, and J. lividum in F. filiformis. These findings highlight regional differences in bacterial community composition and emphasize the need for tailored management practices. This study contributes to safe, high-quality mushroom cultivation and provides insights into improved cultivation practices, including Mushroom Good Agricultural Practices (MGAP).
Collapse
Affiliation(s)
- Zhenghui Liu
- Engineering and Research Center for Southwest Bio-pharmaceutical Resources of National Education Ministry, Guizhou University, Guiyang, China
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
- Institute of Edible Fungi, Guizhou University, Guiyang, China
| | - Yunlong Cong
- Research Institute of Science and Technology, Guizhou University, Guiyang, China
| | - Frederick Leo Sossah
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
- Council for Scientific and Industrial Research (CSIR), Oil Palm Research Institute, Coconut Research Programme, Sekondi, Ghana
| | - Hongyan Sheng
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Yu Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
4
|
Li W, Shang J, Bao D, Wan J, Zhou C, Feng Z, Li H, Shao Y, Wu Y. Whole-Genome Sequence Analysis of Flammulina filiformis and Functional Validation of Gad, a Key Gene for γ-Aminobutyric Acid Synthesis. J Fungi (Basel) 2024; 10:862. [PMID: 39728358 DOI: 10.3390/jof10120862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Flammulina filiformis is one of the widely produced edible fungi worldwide. It is rich in γ-aminobutyric acid (GABA), a non-protein amino acid with important physiological functions in humans. To investigate the functions of key genes in the GABA metabolic pathway of F. filiformis, we isolated the monokaryon Fv-HL23-1 from the factory-cultivated F. filiformis strain Fv-HL23 and then sequenced and assembled the genome using the PacBio Sequel and Illumina NovaSeq sequencing platforms. The results showed that the genome comprised 140 scaffolds with a total length of 40.96 Mb, a GC content of 49.62%, an N50 of 917,125 bp, and 14,256 protein-coding genes. Phylogenetic analysis based on the whole genome revealed a close evolutionary relationship of Fv-HL23-1 with Armillaria mellea, Lentinula edodes, and Schizophyllum commune. A total of 589 carbohydrate-active enzymes were identified in the genome of Fv-HL23-1, suggesting its strong lignocellulose degradation ability, and 108 CYP450 gene family members were identified, suggesting important functions such as resistance to stress, secondary metabolite synthesis, and growth and development. The F. filiformis proteins glutamate decarboxylase 1 (Ff-GAD1) and glutamate decarboxylase 2 (Ff-GAD2), which may be responsible for GABA synthesis, were identified by protein alignment. Molecular docking analysis showed that Ff-GAD2 may have better catalytic activity than Ff-GAD1. To verify the function of Ff-gad2, its heterologous expression in the mycelia of the mononuclear Hypsizigus marmoreus was analyzed. Compared with wild type, the GABA content of mycelia was increased by 85.40-283.90%, the growth rate was increased by 9.39 ± 2.35%, and the fresh weight was increased by 18.44 ± 7.57%. Ff-GAD2 may play a catalytic role in GABA synthesis. In addition, the expression of the full-length Ff-gad2 gene was increased by 7.96 ± 1.39 times compared with the exon expression level in H. marmoreus mycelia, suggesting that the intron may contribute to the heterologous expression of Ff-GAD2. Based on whole-genome sequencing, we analyzed the enzyme system related to the important life activities of F. filiformis, focusing on the function of Ff-GAD, a key enzyme in the GABA synthesis pathway. The results lay a foundation for elucidating the GABA metabolism pathway of edible fungi and developing targeted breeding strategies for GABA-producing edible fungi.
Collapse
Affiliation(s)
- Wenyun Li
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Junjun Shang
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Dapeng Bao
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jianing Wan
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Chenli Zhou
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhan Feng
- Jiangsu Chinagreen Biological Technology Co., Ltd., Siyang 223700, China
| | - Hewen Li
- Jiangsu Chinagreen Biological Technology Co., Ltd., Siyang 223700, China
| | - Youran Shao
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yingying Wu
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
5
|
Yu Y, Liu T, Wang Y, Liu L, He X, Li J, Martin FM, Peng W, Tan H. Comparative analyses of Pleurotus pulmonarius mitochondrial genomes reveal two major lineages of mini oyster mushroom cultivars. Comput Struct Biotechnol J 2024; 23:905-917. [PMID: 38370975 PMCID: PMC10869244 DOI: 10.1016/j.csbj.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Pleurotus pulmonarius, commonly known as the mini oyster mushroom, is highly esteemed for its crisp texture and umami flavor. Limited genetic diversity among P. pulmonarius cultivars raises concerns regarding its sustainable industrial production. To delve into the maternal genetic diversity of the principal P. pulmonarius cultivars, 36 cultivars and five wild isolates were subjected to de novo sequencing and assembly to generate high-quality mitogenome sequences. The P. pulmonarius mitogenomes had lengths ranging from 69,096 to 72,905 base pairs. The mitogenome sizes of P. pulmonarius and those of other mushroom species in the Pleurotus genus showed a significant positive correlation with the counts of LAGLIDAG and GIY-YIG homing endonucleases encoded by intronic open reading frames. A comparison of gene arrangements revealed an inversion of a fragment containing atp9-nad3-nad2 between P. pulmonarius and P. ostreatus. The mitogenomes of P. pulmonarius were clustered into three distinct clades, two of which were crowded with commercial cultivars. Clade I, all of which possess an inserted dpo gene, shared a maternal origin linked to an ancestral cultivar from Taiwan. Primers were designed to target the dpo gene, potentially safeguarding intellectual property rights. The wild isolates in Clade III exhibited more divergent mitogenomes, rendering them valuable for breeding.
Collapse
Affiliation(s)
- Yang Yu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Tianhai Liu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
- Sichuan Agricultural University, Chengdu 610000, China
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Lixu Liu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Xiaolan He
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Jianwei Li
- Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Francis M. Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est, Nancy, Champenoux 54280, France
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Hao Tan
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
6
|
Wu S, Chen X, Ren J, Liu P, Yan Q, Chen Z. Cuparene-type sesquiterpenes with neuroprotective activities from the edible mushroom Flammulina filiformis. Fitoterapia 2024; 179:106235. [PMID: 39321853 DOI: 10.1016/j.fitote.2024.106235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Four new cuparene-type sesquiterpenes, flammuterpenols A - D (1-4), along with one known congener (5) were isolated from the solid culture of edible mushroom Flammulina filiformis. Their structures with a benzoxabicyclo[3.2.1]octane core were elucidated by integrated multiple spectroscopic techniques, electronic circular dichroism, and single crystal X-ray diffraction analysis. Biologically, compounds 1-5 were evaluated in vitro for their neuroprotective effects against 6-hydroxydopamine induced cell death in human neuroblastoma SH-SY5Y cells. All of them exhibited remarkable neuroprotective effects possessing the EC50 values ranging from 0.93 ± 0.02 to 10.28 ± 0.10 μM. These findings not only enrich the structural diversity of cuparene-type sesquiterpenes, but also provide potential candidates for the further development of the neuroprotective agents.
Collapse
Affiliation(s)
- Shouyuan Wu
- Western Guangdong Characteristic Biology and Medicine Engineering and Research Center, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, PR China
| | - Xianqiang Chen
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Jingling Ren
- Western Guangdong Characteristic Biology and Medicine Engineering and Research Center, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, PR China
| | - Peilian Liu
- Western Guangdong Characteristic Biology and Medicine Engineering and Research Center, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, PR China
| | - Qing Yan
- Western Guangdong Characteristic Biology and Medicine Engineering and Research Center, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, PR China
| | - Ziming Chen
- Western Guangdong Characteristic Biology and Medicine Engineering and Research Center, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, PR China.
| |
Collapse
|
7
|
Tong Z, Han X, Duan X, Lin J, Chen J, Xiao J, Gan Y, Gan B, Yan J. Genome-Wide Identification and Expression Analysis of the Cys2His2 Zinc Finger Protein Gene Family in Flammulina filiformis. J Fungi (Basel) 2024; 10:644. [PMID: 39330404 PMCID: PMC11433517 DOI: 10.3390/jof10090644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Zinc finger proteins (ZFPs) are essential transcription factors in eukaryotes, particularly the extensively studied C2H2 family, which is known for its involvement in various biological processes. This research provides a thorough examination and analysis of the C2H2-ZFP gene family in Flammulina filiformis. Using bioinformatics tools, 58 FfC2H2-ZFP genes spread across 11 chromosomes were identified and scrutinized in detail for their gene structures, protein characteristics, and phylogenetic relationships. The study of phylogenetics and synteny sheds light on the evolutionary relationships among C2H2-ZFPs in F. filiformis and other fungi, revealing a complex evolutionary past. The identification of conserved cis-regulatory elements in the gene promoter regions suggests intricate functionalities, particularly in the developmental and stress response pathways. By utilizing RNA-seq and qRT-PCR techniques, the expression patterns of these genes were explored across different developmental stages and tissues of F. filiformis, unveiling distinct expression profiles. Notably, significant expression variations were observed in the stipe elongation region and pilei of various sizes, indicating potential roles in fruiting body morphogenesis. This study enhances our knowledge of the C2H2-ZFP gene family in F. filiformis and lays the groundwork for future investigations into their regulatory mechanisms and applications in fungal biology and biotechnology.
Collapse
Affiliation(s)
- Zongjun Tong
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Xing Han
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- Chengdu Agricultural Science and Technology Center, Chengdu 610095, China
| | - Xinlian Duan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Junbin Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- Chengdu Agricultural Science and Technology Center, Chengdu 610095, China
| | - Jie Chen
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- Chengdu Agricultural Science and Technology Center, Chengdu 610095, China
| | - Jihong Xiao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Ying Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- Chengdu Agricultural Science and Technology Center, Chengdu 610095, China
| | - Bingcheng Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Junjie Yan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| |
Collapse
|
8
|
Karbstein K, Kösters L, Hodač L, Hofmann M, Hörandl E, Tomasello S, Wagner ND, Emerson BC, Albach DC, Scheu S, Bradler S, de Vries J, Irisarri I, Li H, Soltis P, Mäder P, Wäldchen J. Species delimitation 4.0: integrative taxonomy meets artificial intelligence. Trends Ecol Evol 2024; 39:771-784. [PMID: 38849221 DOI: 10.1016/j.tree.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 06/09/2024]
Abstract
Although species are central units for biological research, recent findings in genomics are raising awareness that what we call species can be ill-founded entities due to solely morphology-based, regional species descriptions. This particularly applies to groups characterized by intricate evolutionary processes such as hybridization, polyploidy, or asexuality. Here, challenges of current integrative taxonomy (genetics/genomics + morphology + ecology, etc.) become apparent: different favored species concepts, lack of universal characters/markers, missing appropriate analytical tools for intricate evolutionary processes, and highly subjective ranking and fusion of datasets. Now, integrative taxonomy combined with artificial intelligence under a unified species concept can enable automated feature learning and data integration, and thus reduce subjectivity in species delimitation. This approach will likely accelerate revising and unraveling eukaryotic biodiversity.
Collapse
Affiliation(s)
- Kevin Karbstein
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, 07745 Jena, Germany.
| | - Lara Kösters
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, 07745 Jena, Germany
| | - Ladislav Hodač
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, 07745 Jena, Germany
| | - Martin Hofmann
- Technical University of Ilmenau, Institute for Computer and Systems Engineering, 98693 Ilmenau, Germany
| | - Elvira Hörandl
- University of Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), 37073 Göttingen, Germany
| | - Salvatore Tomasello
- University of Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), 37073 Göttingen, Germany
| | - Natascha D Wagner
- University of Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), 37073 Göttingen, Germany
| | - Brent C Emerson
- Institute of Natural Products and Agrobiology (IPNA-CSIC), Island Ecology and Evolution Research Group, 38206 La Laguna, Tenerife, Canary Islands, Spain
| | - Dirk C Albach
- Carl von Ossietzky-Universität Oldenburg, Institute of Biology and Environmental Science, 26129 Oldenburg, Germany
| | - Stefan Scheu
- University of Göttingen, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, 37073 Göttingen, Germany; University of Göttingen, Centre of Biodiversity and Sustainable Land Use (CBL), 37073 Göttingen, Germany
| | - Sven Bradler
- University of Göttingen, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, 37073 Göttingen, Germany
| | - Jan de Vries
- University of Göttingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, 37077 Göttingen, Germany; University of Göttingen, Campus Institute Data Science (CIDAS), 37077 Göttingen, Germany; University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, 37077 Göttingen, Germany
| | - Iker Irisarri
- Leibniz Institute for the Analysis of Biodiversity Change (LIB), Centre for Molecular Biodiversity Research, Phylogenomics Section, Museum of Nature, 20146 Hamburg, Germany
| | - He Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Chenshan Botanical Garden, 201602 Shanghai, China
| | - Pamela Soltis
- University of Florida, Florida Museum of Natural History, 32611 Gainesville, USA
| | - Patrick Mäder
- Technical University of Ilmenau, Institute for Computer and Systems Engineering, 98693 Ilmenau, Germany; German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Friedrich Schiller University Jena, Faculty of Biological Sciences, Institute of Ecology and Evolution, Philosophenweg 16, 07743 Jena, Germany
| | - Jana Wäldchen
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, 07745 Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Grocholl J, Ferguson M, Hughes S, Trujillo S, Burall LS. Listeria monocytogenes Contamination Leads to Survival and Growth During Enoki Mushroom Cultivation. J Food Prot 2024; 87:100290. [PMID: 38701973 DOI: 10.1016/j.jfp.2024.100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Two recent outbreaks of listeriosis have been linked to the consumption of enoki mushrooms. After the first outbreak, import sampling by the U.S. FDA identified that 43% of the samples evaluated were positive for Listeria monocytogenes (Lm). These observations raised questions about the potential sources of Lm contamination of enoki mushrooms. One potential source of contamination is during enoki mushroom cultivation, as growing conditions are comparatively cool and moist to induce mushroom germination, to which Lm is well adapted. Two varieties of enoki mushrooms were evaluated to determine the potential for Lm to contaminate enoki cultures when introduced at various points during cultivation (inoculation, scraping, pinning, and collaring). The results of two trials showed that Lm established contamination and grew to similar levels in the substrate regardless of when Lm was introduced and, with one exception, did not alter the rate of mushroom generation to below the control. Enumeration of Lm in enoki mushroom cultures at harvest found an average contamination of 103 cfu/g, though the results were variable. Refrigerated storage for six weeks was found to result in an increase in Lm. Additionally, no statistically significant difference in the levels of Lm was observed based on proximity to the substrate, though levels of Lm in the different enoki samples correlated with levels of Lm in the substrate at harvest, but not at scraping. The ability of Lm to grow independently in the media used to culture enoki was assessed, and Lm was found to be unable to grow but could sporadically survive in Masters Mix. No growth of Lm was observed in potato dextrose broth, though growth could occur on the agar. Overall, the data indicate a high potential for the establishment of Lm contamination at any point during enoki cultivation to result in Lm-contaminated mushrooms. These data indicate a need for active control mechanisms to prevent the introduction of Lm to enoki cultures.
Collapse
Affiliation(s)
- John Grocholl
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. FDA, Laurel, MD, USA
| | - Martine Ferguson
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. FDA, College Park, MD, USA
| | - Stephen Hughes
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. FDA, Laurel, MD, USA
| | - Socrates Trujillo
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. FDA, Laurel, MD, USA
| | - Laurel S Burall
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. FDA, Laurel, MD, USA.
| |
Collapse
|
10
|
Im JH, Park CH, Shin JH, Oh YL, Oh M, Paek NC, Park YJ. Effects of Light on the Fruiting Body Color and Differentially Expressed Genes in Flammulina velutipes. J Fungi (Basel) 2024; 10:372. [PMID: 38921359 PMCID: PMC11204606 DOI: 10.3390/jof10060372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Light plays vital roles in fungal growth, development, reproduction, and pigmentation. In Flammulina velutipes, the color of the fruiting body exhibits distinct changes in response to light; however, the underlying molecular mechanisms remain unknown. Therefore, in this study, we aimed to analyze the F. velutipes transcriptome under red, green, and blue light-emitting diode (LED) lights to identify the key genes affecting the light response and fruiting body color in this fungus. Additionally, we conducted protein-protein interaction (PPI) network analysis of the previously reported fruiting body color-related gene, Fvpal1, to identify the hub genes. Phenotypic analysis revealed that fruiting bodies exposed to green and blue lights were darker than those untreated or exposed to red light, with the color intensifying more after 48 h of exposure to blue light compared to that after 24 h of exposure. Differentially expressed gene (DEG) analyses of all light treatments for 24 h revealed that the numbers of DEGs were 17, 74, and 257 under red, green, and blue lights, respectively. Subsequently, functional enrichment analysis was conducted of the DEGs identified under green and blue lights, which influenced the color of F. velutipes. In total, 103 of 168 downregulated DEGs under blue and green lights were included in the enrichment analysis. Among the DEGs enriched under both green and blue light treatments, four genes were related to monooxygenases, with three genes annotated as cytochrome P450s that are crucial for various metabolic processes in fungi. PPI network analysis of Fvpal1 revealed associations with 11 genes, among which the expression of one gene, pyridoxal-dependent decarboxylase, was upregulated in F. velutipes exposed to blue light. These findings contribute to our understanding of the molecular mechanisms involved in the fruiting body color changes in response to light and offer potential molecular markers for further exploration of light-mediated regulatory pathways.
Collapse
Affiliation(s)
- Ji-Hoon Im
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea;
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong-gun 27709, Republic of Korea; (Y.-L.O.); (M.O.)
| | - Che-Hwon Park
- Department of Medicinal Biosciences, Research Institute for Biomedicinal & Health Science, College of Biomedicinal and Health Science, Konkuk University, Chungju 27478, Republic of Korea; (C.-H.P.); (J.-H.S.)
| | - Ju-Hyeon Shin
- Department of Medicinal Biosciences, Research Institute for Biomedicinal & Health Science, College of Biomedicinal and Health Science, Konkuk University, Chungju 27478, Republic of Korea; (C.-H.P.); (J.-H.S.)
| | - Youn-Lee Oh
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong-gun 27709, Republic of Korea; (Y.-L.O.); (M.O.)
| | - Minji Oh
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong-gun 27709, Republic of Korea; (Y.-L.O.); (M.O.)
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| | - Young-Jin Park
- Department of Medicinal Biosciences, Research Institute for Biomedicinal & Health Science, College of Biomedicinal and Health Science, Konkuk University, Chungju 27478, Republic of Korea; (C.-H.P.); (J.-H.S.)
| |
Collapse
|
11
|
Zhu L, Bau T. Species clarification of fairy inkcap (" Coprinellus disseminatus") in China. Mycology 2024; 15:424-470. [PMID: 39247893 PMCID: PMC11376300 DOI: 10.1080/21501203.2024.2309901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/20/2024] [Indexed: 09/10/2024] Open
Abstract
Coprinellus disseminatus and other morphologically similar species are widely dispersed worldwide and are commonly referred to as "fairy inkcap". Based on the molecular phylogenetic study and morphological observation, a thorough investigation was carried out utilising 74 collections of related species that were gathered from seventeen provinces and five Chinese fungaria between 1998 and 2023 and revealed 11 lineages of "fairy inkcap", nine of which were found in China, and which belonged to the two genera Coprinellus and Tulosesus. In sect. Disseminati, genetic diversities (π), and fixation index (Fst) amongst lineages were computed, and a haplotype-based network was established to ascertain the relationships amongst each clade. A new section of Coprinellus, sect. Aureodisseminati, were discovered. In addition, four new species (C. aureodisseminatus, C. austrodisseminatus, C. parcus, and C. velutipes), a new subspecies of C. disseminatus, a new combination (Tulosesus pseudodisseminatus), the first discovery of epigamous type of C. magnoliae and a new record to China (T. subdisseminatus) were also identified and thoroughly described with accompanying illustrations. Their differences in macro- and micro-features, as well as their character sequence, were discussed.
Collapse
Affiliation(s)
- Liyang Zhu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Key Laboratory of Edible Fungi Resources and Utilization (North), Ministry of Agriculture, Changchun, China
| | - Tolgor Bau
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Key Laboratory of Edible Fungi Resources and Utilization (North), Ministry of Agriculture, Changchun, China
| |
Collapse
|
12
|
Lu H, Song W, Shang XD, Liu JY, Zhang D, Li L, Wang RJ, Zhai XT, Feng T. Expression of terpene synthase-related genes in parents and offspring of Flammulina filiformis based on differences in volatile aroma components. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100156. [PMID: 36588602 PMCID: PMC9794882 DOI: 10.1016/j.fochms.2022.100156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/25/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Flammulina filiformis (F. filiformis) is one of the four major edible types of fungus in the world and has been cultivated in China since 800 CE (Anno Domini). Some of the most essential criteria for evaluating the quality of F. filiformis are the types and contents of volatile components present. A focused study on screened the terpene synthase genes involved in the aroma of offspring and compared key terpenoids between parents and offspring, which is helpful for the development and application of F. filiformis. Firstly, the volatile aroma components of parent and offspring F. filiformis were extracted using two pretreatment procedures, and then were semi-quantified by an internal standard. Forty-eight, fifty-eight, and forty-eight volatile compounds were identified in parents and offspring of three different strains, and 15, 22, and 12 aroma compounds (OAVs ≥ 1) were further screened out via calculating their odor activity values (OAVs). Terpenoids, in particular linalool and eucalyptol, which contribute more to the aroma, result in the unique green and grassy aroma of the offspring. At last, the F. filiformis genome was resequenced and the coordinates of genes related to terpenoid synthase were determined. The results showed that Scaffolds, including scaffold3.t874 and scaffold9.t157 were connected to terpenoid synthesis of offspring (No. 61523). The variant genes g269 and g61 were related to terpenoid synthase sequences. This study provides a theoretical foundation for the cultivation of more diverse and unique varieties of F. filiformis.
Collapse
Affiliation(s)
- Huan Lu
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, China
| | - Wei Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiao-Dong Shang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, China
| | - Jian-Yu Liu
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, China
| | - Dan Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, China
| | - Liang Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Rui-Juan Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, China
| | - Xiao-Ting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
13
|
Zhang Y, Chen S, Yang L, Zhang Q. Application progress of CRISPR/Cas9 genome-editing technology in edible fungi. Front Microbiol 2023; 14:1169884. [PMID: 37303782 PMCID: PMC10248459 DOI: 10.3389/fmicb.2023.1169884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/26/2023] [Indexed: 06/13/2023] Open
Abstract
Edible fungi are not only delicious but are also rich in nutritional and medicinal value, which is highly sought after by consumers. As the edible fungi industry continues to rapidly advance worldwide, particularly in China, the cultivation of superior and innovative edible fungi strains has become increasingly pivotal. Nevertheless, conventional breeding techniques for edible fungi can be arduous and time-consuming. CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9) is a powerful tool for molecular breeding due to its ability to mediate high-efficiency and high-precision genome modification, which has been successfully applied to many kinds of edible fungi. In this review, we briefly summarized the working mechanism of the CRISPR/Cas9 system and highlighted the application progress of CRISPR/Cas9-mediated genome-editing technology in edible fungi, including Agaricus bisporus, Ganoderma lucidum, Flammulina filiformis, Ustilago maydis, Pleurotus eryngii, Pleurotus ostreatus, Coprinopsis cinerea, Schizophyllum commune, Cordyceps militaris, and Shiraia bambusicola. Additionally, we discussed the limitations and challenges encountered using CRISPR/Cas9 technology in edible fungi and provided potential solutions. Finally, the applications of CRISPR/Cas9 system for molecular breeding of edible fungi in the future are explored.
Collapse
|
14
|
Guo Y, Chen X, Gong P, Deng Z, Qi Z, Wang R, Long H, Wang J, Yao W, Yang W, Chen F. Recent advances in quality preservation of postharvest golden needle mushroom (Flammulina velutiper). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37014278 DOI: 10.1002/jsfa.12603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The golden needle mushroom (Flammulina velutiper) is one of the most productive mushrooms in the world. However, F. velutiper experiences continuous quality degradation in terms of changes in color and textural characteristics, loss of moisture, nutrition and flavor, and increased microbial populations due to its high respiratory activity during the postharvest phase. Postharvest preservation techniques, including physical, chemical and biological methods, play a vital role in maintaining postharvest quality and extending the shelf life of mushrooms. Therefore, in this study, the decay process of F. velutiper and the factors affecting its quality were comprehensively reviewed. Additionally, the preservation methods (e.g., low-temperature storage, packaging, plasma treatment, antimicrobial cleaning and 1-methylcyclopropene treatment) for F. velutiper used for the last 5 years were compared to provide an outlook on future research directions. Overall, this review aims to provide a reference for developing novel, green and safe preservation techniques for F. velutiper. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Zhenfang Deng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Zhuoya Qi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Ruotong Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Hui Long
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jiating Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wenbo Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wenjuan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, China
| |
Collapse
|
15
|
Liu F, Wang SH, Jia DH, Tan H, Wang B, Zhao RL. Development of Multiple Nucleotide Polymorphism Molecular Markers for Enoki Mushroom ( Flammulina filiformis) Cultivars Identification. J Fungi (Basel) 2023; 9:jof9030330. [PMID: 36983498 PMCID: PMC10056640 DOI: 10.3390/jof9030330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
The enoki mushroom (Flammulina filiformis) is one of the most important and popular edible mushrooms commercially in China. However, traditional mushroom cultivar identification is challenging due to poor accuracy, heavy workloads, and low reproducibility. To overcome this challenge, we developed a method for identifying F. filiformis strains using multiple nucleotide polymorphism sequencing (MNP-seq). This involved screening 179 universal MNP markers based on whole-genome sequencing data, constructing an MNP sequence library, and performing multiplex PCR amplification and high-sequencing. We further screened 69 core MNP markers and used them to build a neighbor-joining (NJ) phylogenetic tree of 232 cultivated and wild strains. Our analysis showed that all cultivars could be accurately separated by computing genetic similarity values and that the cultivars could be separated into 22 distinct evolutionary pedigrees. The specific value of genetic similarity can be used as the standard to distinguish F. filiformis cultivars, however, it needs to be comprehensively defined by the additional phenotype and biological characteristics of those strains in the future work.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shi-Hui Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Ding-Hong Jia
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Hao Tan
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Bo Wang
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Rui-Lin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Fay ML, Salazar JK, George J, Chavda NJ, Lingareddygari P, Patil GR, Juneja VK, Ingram D. Modeling the Fate of Listeria monocytogenes and Salmonella enterica on Fresh Whole and Chopped Wood Ear and Enoki Mushrooms. J Food Prot 2023; 86:100075. [PMID: 36989858 DOI: 10.1016/j.jfp.2023.100075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Two recent foodborne illness outbreaks linked to specialty mushrooms have occurred in the United States, both representing novel pathogen-commodity pairings. Listeria monocytogenes and Salmonella enterica were linked to enoki and wood ear mushrooms, respectively. The aim of this study was therefore to examine the survival of both L. monocytogenes and S. enterica on raw whole and chopped enoki and wood ear mushrooms during storage at different temperatures. Fresh mushrooms were either left whole or chopped and subsequently inoculated with a cocktail of either S. enterica or rifampicin-resistant L. monocytogenes, resulting in an initial inoculation level of 3 log CFU/g. Mushroom samples were stored at 5, 10, or 25°C for up to 7 d. During storage, the population levels of S. enterica or L. monocytogenes on the mushrooms were enumerated. The primary Baranyi model was used to estimate the growth rates of both pathogens and the secondary Ratkowsky square root model was used to model the relationship between growth rates and temperature. Both L. monocytogenes and S. enterica survived on both mushroom types and preparations at all temperatures. No proliferation of either pathogen was observed on mushrooms stored at 5°C. At 10°C, moderate growth was observed for both pathogens on enoki mushrooms and for L. monocytogenes on wood ear mushrooms; no growth was observed for S. enterica on wood ear mushrooms. At 25°C, both pathogens proliferated on both mushroom types with growth rates ranging from 0.43 to 3.27 log CFU/g/d, resulting in 1 log CFU/g increases in only 0.31 d (7.44 h) to 2.32 d. Secondary models were generated for L. monocytogenes on whole wood ear mushrooms and S. enterica on whole enoki mushrooms with goodness-of-fit parameters of r2 = 0.9855/RMSE = 0.0479 and r2 = 0.9882/RMSE = 0.1417, respectively. Results from this study can aid in understanding the dynamics of L. monocytogenes and S. enterica on two types of specialty mushrooms.
Collapse
|
17
|
Maekawa N, Sugawara R, Kogi H, Norikura S, Sotome K, Endo N, Nakagiri A, Ushijima S. Hypochnicium sensu lato ( Polyporales, Basidiomycota) from Japan, with descriptions of a new genus and three new species. MYCOSCIENCE 2023; 64:19-34. [PMID: 37089899 PMCID: PMC10042306 DOI: 10.47371/mycosci.2022.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 02/03/2023]
Abstract
Species of Hypochnicium (Polyporales, Basidiomycota) collected from Japan were studied on their taxonomy by morphological and phylogenetic approaches. Phylogenetic analyses based on a nrDNA LSU and ITS dataset including the Japanese specimens and other publicly available ones show that Hypochnicium is polyphyletic. Since the clade containing the type species H. bombycinum was well-supported, we defined this clade as Hypochnicium s. str., and emended Hypochnicium to include restricted taxa with only smooth basidiospores. The new genus Neohypochnicium is proposed to accommodate the remaining taxa excluded from the genus Hypochnicium s. str., which includes both species with smooth basidiospores and ornamented ones. Three new species, Gyrophanopsis japonica, N. asiaticum and N. perlongicystidiosum are described and illustrated based on morphological and phylogenetic analyses using an ITS region dataset. In addition, the following 15 new combinations are proposed: N. albostramineum, N. aotearoae, N. capitulateum, N. cremicolor, N. cystidiatum, N. geogenium, N. guineense, N. huinayense, N. michelii, N. microsporum, N. patagonicum, N. pini, N. punctulatum, N. subrigescens and N. wakefieldiae. An identification key to Japanese species of Bulbillomyces, Gyrophanopsis, Hypochnicium and Neohypochnicium is provided.
Collapse
Affiliation(s)
- Nitaro Maekawa
- Fungus/Mushroom
Resource and Research Center, Faculty of Agriculture, Tottori
University
| | - Ryo Sugawara
- The United
Graduate School of Agricultural Sciences, Tottori
University
| | - Hiroki Kogi
- Graduate School
of Sustainability Science, Tottori University
| | | | - Kozue Sotome
- Fungus/Mushroom
Resource and Research Center, Faculty of Agriculture, Tottori
University
| | - Naoki Endo
- Fungus/Mushroom
Resource and Research Center, Faculty of Agriculture, Tottori
University
| | - Akira Nakagiri
- Fungus/Mushroom
Resource and Research Center, Faculty of Agriculture, Tottori
University
| | | |
Collapse
|
18
|
Lyu X, Wang Q, Liu A, Liu F, Meng L, Wang P, Zhang Y, Wang L, Li Z, Wang W. The transcription factor Ste12-like increases the mycelial abiotic stress tolerance and regulates the fruiting body development of Flammulina filiformis. Front Microbiol 2023; 14:1139679. [PMID: 37213522 PMCID: PMC10192742 DOI: 10.3389/fmicb.2023.1139679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/14/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Flammulina filiformis is one of the most commercially important edible fungi worldwide, with its nutritional value and medicinal properties. It becomes a good model species to study the tolerance of abiotic stress during mycelia growth in edible mushroom cultivation. Transcription factor Ste12 has been reported to be involved in the regulation of stress tolerance and sexual reproduction in fungi. Methods In this study, identification and phylogenetic analysis of ste12-like was performed by bioinformatics methods. Four ste12-like overexpression transformants of F. filiformis were constructed by Agrobacterium tumefaciens-mediated transformation. Results and Discussion Phylogenetic analysis showed that Ste12-like contained conserved amino acid sequences. All the overexpression transformants were more tolerant to salt stress, cold stress and oxidative stress than wild-type strains. In the fruiting experiment, the number of fruiting bodies of overexpression transformants increased compared with wild-type strains, but the growth rate of stipes slowed down. It suggested that gene ste12-like was involved in the regulation of abiotic stress tolerance and fruiting body development in F. filiformis.
Collapse
Affiliation(s)
- Xiaomeng Lyu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingji Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Ao Liu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Fang Liu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Meng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Panmeng Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yan Zhang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Li Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- *Correspondence: Li Wang,
| | - Zhuang Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Zhuang Li,
| | - Wei Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Wei Wang,
| |
Collapse
|
19
|
Wang PM, Meng X, Yang ZL, Li YC. New species of Leccinum from Southwest China. Mycol Prog 2023. [DOI: 10.1007/s11557-022-01848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
20
|
Ding Y, Mo W, Deng Z, Kimatu BM, Gao J, Fang D. Storage Quality Variation of Mushrooms ( Flammulina velutipes) after Cold Plasma Treatment. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010070. [PMID: 36676018 PMCID: PMC9864181 DOI: 10.3390/life13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Flammulina velutipes is susceptible to mechanical damage, water loss, microbial growth, and other factors that lead to postharvest deterioration, thereby shortening the storage period. The purpose of this study was to analyze the effects of cold plasma treatment on the physicochemical properties and antioxidant capacity of F. velutipes during storage at 4 °C for 21 days. Compared to the control group, cold plasma cold sterilization (CPCS) treatment (150 Hz, 95 kV for 150 s) effectively inhibited the growth and multiplication of microorganisms on the surface of F. velutipes, with no significant effect on the fresh weight change and the superoxide anion generation rate, but with a higher postharvest 1,1-dephenyl-2-picrylhydrzyl (DPPH) clearance rate. Moreover, CPCS increased antioxidant enzyme activities, delayed both malondialdehyde (MDA) accumulation and vitamin C loss, inhibited the browning reaction and polyphenol oxidases (PPO) activity and protected F. velutipes cell membrane from disruption. In general, CPCS not only achieved bacteriostatic effects on F. velutipes during storage, but also reduced cell damage from free radical oxidation, resulting in better postharvest quality and longer shelf life.
Collapse
Affiliation(s)
- Yuxuan Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixian Mo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zilong Deng
- State Key Laboratory Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Benard Muinde Kimatu
- Department of Dairy and Food Science and Technology, Egerton University, Egerton 20115, Kenya
| | - Juan Gao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Donglu Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence:
| |
Collapse
|
21
|
Sklenář F, Glässnerová K, Jurjević Ž, Houbraken J, Samson R, Visagie C, Yilmaz N, Gené J, Cano J, Chen A, Nováková A, Yaguchi T, Kolařík M, Hubka V. Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability. Stud Mycol 2022; 102:53-93. [PMID: 36760461 PMCID: PMC9903908 DOI: 10.3114/sim.2022.102.02] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Aspergillus series Versicolores members occur in a wide range of environments and substrates such as indoor environments, food, clinical materials, soil, caves, marine or hypersaline ecosystems. The taxonomy of the series has undergone numerous re-arrangements including a drastic reduction in the number of species and subsequent recovery to 17 species in the last decade. The identification to species level is however problematic or impossible in some isolates even using DNA sequencing or MALDI-TOF mass spectrometry indicating a problem in the definition of species boundaries. To revise the species limits, we assembled a large dataset of 518 strains. From these, a total of 213 strains were selected for the final analysis according to their calmodulin (CaM) genotype, substrate and geography. This set was used for phylogenetic analysis based on five loci (benA, CaM, RPB2, Mcm7, Tsr1). Apart from the classical phylogenetic methods, we used multispecies coalescence (MSC) model-based methods, including one multilocus method (STACEY) and five single-locus methods (GMYC, bGMYC, PTP, bPTP, ABGD). Almost all species delimitation methods suggested a broad species concept with only four species consistently supported. We also demonstrated that the currently applied concept of species is not sustainable as there are incongruences between single-gene phylogenies resulting in different species identifications when using different gene regions. Morphological and physiological data showed overall lack of good, taxonomically informative characters, which could be used for identification of such a large number of existing species. The characters expressed either low variability across species or significant intraspecific variability exceeding interspecific variability. Based on the above-mentioned results, we reduce series Versicolores to four species, namely A. versicolor, A. creber, A. sydowii and A. subversicolor, and the remaining species are synonymized with either A. versicolor or A. creber. The revised descriptions of the four accepted species are provided. They can all be identified by any of the five genes used in this study. Despite the large reduction in species number, identification based on phenotypic characters remains challenging, because the variation in phenotypic characters is high and overlapping among species, especially between A. versicolor and A. creber. Similar to the 17 narrowly defined species, the four broadly defined species do not have a specific ecology and are distributed worldwide. We expect that the application of comparable methodology with extensive sampling could lead to a similar reduction in the number of cryptic species in other extensively studied Aspergillus species complexes and other fungal genera. Citation: Sklenář F, Glässnerová K, Jurjević Ž, Houbraken J, Samson RA, Visagie CM, Yilmaz N, Gené J, Cano J, Chen AJ, Nováková A, Yaguchi T, Kolařík M, Hubka V (2022). Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability. Studies in Mycology 102 : 53-93. doi: 10.3114/sim.2022.102.02.
Collapse
Affiliation(s)
- F. Sklenář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - K. Glässnerová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ž. Jurjević
- EMSL Analytical, Cinnaminson, New Jersey, USA
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - C.M. Visagie
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - N. Yilmaz
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - J. Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - J. Cano
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - A.J. Chen
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd., Guangzhou, China
| | - A. Nováková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - T. Yaguchi
- Medical Mycology Research Center, Chiba University, Chuo-ku, Chiba, Japan
| | - M. Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - V. Hubka
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
- Medical Mycology Research Center, Chiba University, Chuo-ku, Chiba, Japan
| |
Collapse
|
22
|
Ecological speciation of Japanese hedgehog mushroom: Hydnum subalpinum sp. nov. is distinguished from its sister species H. repando-orientale by means of integrative taxonomy. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Bian C, Kusuya Y, Sklenář F, D’hooge E, Yaguchi T, Ban S, Visagie C, Houbraken J, Takahashi H, Hubka V. Reducing the number of accepted species in Aspergillus series Nigri. Stud Mycol 2022; 102:95-132. [PMID: 36760462 PMCID: PMC9903907 DOI: 10.3114/sim.2022.102.03] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The Aspergillus series Nigri contains biotechnologically and medically important species. They can produce hazardous mycotoxins, which is relevant due to the frequent occurrence of these species on foodstuffs and in the indoor environment. The taxonomy of the series has undergone numerous rearrangements, and currently, there are 14 species accepted in the series, most of which are considered cryptic. Species-level identifications are, however, problematic or impossible for many isolates even when using DNA sequencing or MALDI-TOF mass spectrometry, indicating a possible problem in the definition of species limits or the presence of undescribed species diversity. To re-examine the species boundaries, we collected DNA sequences from three phylogenetic markers (benA, CaM and RPB2) for 276 strains from series Nigri and generated 18 new whole-genome sequences. With the three-gene dataset, we employed phylogenetic methods based on the multispecies coalescence model, including four single-locus methods (GMYC, bGMYC, PTP and bPTP) and one multilocus method (STACEY). From a total of 15 methods and their various settings, 11 supported the recognition of only three species corresponding to the three main phylogenetic lineages: A. niger, A. tubingensis and A. brasiliensis. Similarly, recognition of these three species was supported by the GCPSR approach (Genealogical Concordance Phylogenetic Species Recognition) and analysis in DELINEATE software. We also showed that the phylogeny based on benA, CaM and RPB2 is suboptimal and displays significant differences from a phylogeny constructed using 5 752 single-copy orthologous proteins; therefore, the results of the delimitation methods may be subject to a higher than usual level of uncertainty. To overcome this, we randomly selected 200 genes from these genomes and performed ten independent STACEY analyses, each with 20 genes. All analyses supported the recognition of only one species in the A. niger and A. brasiliensis lineages, while one to four species were inconsistently delimited in the A. tubingensis lineage. After considering all of these results and their practical implications, we propose that the revised series Nigri includes six species: A. brasiliensis, A. eucalypticola, A. luchuensis (syn. A. piperis), A. niger (syn. A. vinaceus and A. welwitschiae), A. tubingensis (syn. A. chiangmaiensis, A. costaricensis, A. neoniger and A. pseudopiperis) and A. vadensis. We also showed that the intraspecific genetic variability in the redefined A. niger and A. tubingensis does not deviate from that commonly found in other aspergilli. We supplemented the study with a list of accepted species, synonyms and unresolved names, some of which may threaten the stability of the current taxonomy. Citation: Bian C, Kusuya Y, Sklenář F, D'hooge E, Yaguchi T, Ban S, Visagie CM, Houbraken J, Takahashi H, Hubka V (2022). Reducing the number of accepted species in Aspergillus series Nigri. Studies in Mycology 102: 95-132. doi: 10.3114/sim.2022.102.03.
Collapse
Affiliation(s)
- C. Bian
- Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Y. Kusuya
- Medical Mycology Research Center, Chiba University, Chiba, Japan
- Biological Resource Center, National Institute of Technology and Evaluation, Kisarazu, Japan
| | - F. Sklenář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - E. D’hooge
- BCCM/IHEM collection, Mycology and Aerobiology, Sciensano, Bruxelles, Belgium
| | - T. Yaguchi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - S. Ban
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - C.M. Visagie
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - H. Takahashi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
- Molecular Chirality Research Center, Chiba University, Chiba, Japan
- Plant Molecular Science Center, Chiba University, Chiba, Japan
| | - V. Hubka
- Medical Mycology Research Center, Chiba University, Chiba, Japan
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
24
|
Liu Y, Ma X, Long Y, Yao S, Wei C, Han X, Gan B, Yan J, Xie B. Effects of β-1,6-Glucan Synthase Gene ( FfGS6) Overexpression on Stress Response and Fruit Body Development in Flammulina filiformis. Genes (Basel) 2022; 13:1753. [PMID: 36292637 PMCID: PMC9601887 DOI: 10.3390/genes13101753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2023] Open
Abstract
β-1, 6-glucan synthase is a key enzyme of β-1, 6-glucan synthesis, which plays a vital role in the cell wall cross-linking of fungi. However, the role of the β-1, 6-glucan synthase gene in the development of the fruiting body and the stress response of macrofungi is largely unknown. In this study, four overexpression transformants of the β-1, 6-glucan synthase gene (FfGS6) were successfully obtained, and gene function was studied in Flammulina filiformis. The overexpression of FfGS6 can increase the width of mycelium cells and improve the tolerance ability under mechanical injury and oxidative stress. Moreover, FfGS6 gene expression fluctuated in up-regulation during the recovery process of mycelium injury but showed a negative correlation with H2O2 concentration. Fruiting body phenotype tests showed that mycelia's recovery ability after scratching improved when the FfGS6 gene was overexpressed. However, primordia formation and the stipe elongation ability were significantly inhibited. Our findings indicate that FfGS6 is involved in regulating mycelial cell morphology, the mycelial stress response, and fruit body development in F. filiformis.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinbin Ma
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Long
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sen Yao
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chuanzheng Wei
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xing Han
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Bingcheng Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Junjie Yan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
25
|
Liu J, Cui H, Wang R, Xu Z, Yu H, Song C, Lu H, Li Q, Xing D, Tan Q, Sun W, Zou G, Shang X. A Simple and Efficient CRISPR/Cas9 System Using A Ribonucleoprotein Method for Flammulina filiformis. J Fungi (Basel) 2022; 8:jof8101000. [PMID: 36294565 PMCID: PMC9604558 DOI: 10.3390/jof8101000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
CRISPR/Cas9 systems were established in some edible fungi based on in vivo expressed Cas9 and guide RNA. Compared with those systems, the in vitro assembled Cas9 and sgRNA ribonucleoprotein complexes (RNPs) have more advantages, but only a few examples were reported, and the editing efficiency is relatively low. In this study, we developed and optimized a CRISPR/Cas9 genome-editing method based on in vitro assembled ribonucleoprotein complexes in the mushroom Flammulina filiformis. The surfactant Triton X-100 played a critical role in the optimal method, and the targeting efficiency of the genomic editing reached 100% on a selective medium containing 5-FOA. This study is the first to use an RNP complex delivery to establish a CRISPR/Cas9 genome-editing system in F. filiformis. Moreover, compared with other methods, this method avoids the use of any foreign DNA, thus saving time and labor when it comes to plasmid construction.
Collapse
Affiliation(s)
- Jianyu Liu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Haiyang Cui
- College of Marine Resources and Environment, Hebei Normal University of Science & Technology, Qinghuangdao 066004, China
| | - Ruijuan Wang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhen Xu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hailong Yu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Chunyan Song
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Huan Lu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Qiaozhen Li
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Danrun Xing
- College of Marine Resources and Environment, Hebei Normal University of Science & Technology, Qinghuangdao 066004, China
| | - Qi Tan
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Weiming Sun
- College of Marine Resources and Environment, Hebei Normal University of Science & Technology, Qinghuangdao 066004, China
- Correspondence: (W.S.); (G.Z.); (X.S.); Tel.: +86-335-8058992 (W.S.); +86-13671512909 (G.Z.); +86-21-62209760 (X.S.)
| | - Gen Zou
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence: (W.S.); (G.Z.); (X.S.); Tel.: +86-335-8058992 (W.S.); +86-13671512909 (G.Z.); +86-21-62209760 (X.S.)
| | - Xiaodong Shang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence: (W.S.); (G.Z.); (X.S.); Tel.: +86-335-8058992 (W.S.); +86-13671512909 (G.Z.); +86-21-62209760 (X.S.)
| |
Collapse
|
26
|
Tan H, Yu Y, Fu Y, Liu T, Wang Y, Peng W, Wang B, Chen J. Comparative analyses of Flammulina filiformis mitochondrial genomes reveal high length polymorphism in intergenic regions and multiple intron gain/loss in cox1. Int J Biol Macromol 2022; 221:1593-1605. [PMID: 36116598 DOI: 10.1016/j.ijbiomac.2022.09.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022]
Abstract
The golden-needle mushroom Flammulina filiformis is one of the bulk mushroom products in the world. This study obtained complete mitogenomes of 44 wild isolates collected from nine provinces and two artificially bred cultivars of F. filiformis, together with three Flammulina rossica isolates and one Flammulina fennae isolate for comparison. The mitogenome of F. filiformis ranged from 83,540 bp to 90,938 bp, consisting of 14 conserved protein-coding genes (PCGs), two rRNA genes, and 25 tRNA genes. To the best of our knowledge, it contained the highest proportion of intergenic regions compared to the other known Basidiomycota mitogenomes. Introns and intergenic regions were two major contributing factors to the total size of the F. filiformis mitogenome. The conserved PCG cox3 is located in an intron of another conserved PCG, nad5. This is a unique phenomenon in all known fungal mitogenomes. Gain/loss of introns was observed in cox1, nad5, and rnl. Length polymorphism was widely observed in intergenic regions. Accordingly, primers were designed as useful markers for rapid identification of F. filiformis isolates with differentiated mitogenomes. Our findings provide a basis for further studies related to variety identification and population genetics of this economically important mushroom.
Collapse
Affiliation(s)
- Hao Tan
- School of Bioengineering, Jiangnan University, Wuxi, China; Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yang Yu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yu Fu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China; College of Life Sciences, Sichuan University, Chengdu, China
| | - Tianhai Liu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Bo Wang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China.
| | - Jian Chen
- School of Bioengineering, Jiangnan University, Wuxi, China.
| |
Collapse
|
27
|
A novel fungal negative-stranded RNA virus related to mymonaviruses in Auricularia heimuer. Arch Virol 2022; 167:2223-2227. [PMID: 35962823 DOI: 10.1007/s00705-022-05540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
Here, we report the characterization of a novel (-)ssRNA mycovirus isolated from Auricularia heimuer CCMJ1222, using a combination of RNA-seq, reverse transcription polymerase chain reaction, 5' and 3' rapid amplification of cDNA ends, and Sanger sequencing. Based on database searches, sequence alignment, and phylogenetic analysis, we designated the virus as "Auricularia heimuer negative-stranded RNA virus 1" (AhNsRV1). This virus has a monopartite RNA genome related to mymonaviruses (order Mononegavirales). The AhNsRV1 genome consists of 11,441 nucleotides and contains six open reading frames (ORFs). The largest ORF encodes a putative RNA-dependent RNA polymerase; the other ORFs encode hypothetical proteins with no conserved domains or known function. AhNsRV1 is the first (-)ssRNA virus and the third virus known to infect A. heimuer.
Collapse
|
28
|
Li H, Shi L, Tang W, Xia W, Zhong Y, Xu X, Xie B, Tao Y. Comprehensive Genetic Analysis of Monokaryon and Dikaryon Populations Provides Insight Into Cross-Breeding of Flammulina filiformis. Front Microbiol 2022; 13:887259. [PMID: 35865932 PMCID: PMC9294462 DOI: 10.3389/fmicb.2022.887259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022] Open
Abstract
Flammulina filiformis, as one of the most popular edible fungi in East Asia, is produced in an industrialized and standardized way. However, its monotonous variety and product convergence have seriously restricted the development of the industry. In this study, 11 cultivated strains and 13 wild strains of F. filiformis were collected from multiple regions of China and Japan and were performed genome sequencing. Together with genome data of six strains previously released, in total 23 dikaryons (formed by two monokaryons mating, can making fruiting body), 35 monokaryons (formed by protoplast-regenerating of dikaryon and isolating) were used for genetic diversity and population structure analysis based on the high-throughput genotyping. Firstly, a set of SNP markers with intrapopulation polymorphism including 849,987 bi-allelic SNPs were developed and basically covered all of 11 chromosomes with a high distribution density of 24.16 SNP markers per kb. The cultivated dikaryotic strains were divided into three subgroups, and their breeding history was made inferences, which is consistent with the available pedigree records. The wild dikaryotic strains were divided into two subgroups and showed varied contributions of genetic components with high genetic diversity. All the investigated dikaryons have a symmetric distribution pattern with their two constituent monokaryons in principal component analysis. Finally, we summarized the pedigree relationship diagram of F. filiformis main strains including six modules, and the genotypes of hybrids can be directly phased by the known parental allele according to it. This study provides a method to distinguish two sets of monokaryon haplotypes, and several valuable genetic resources of wild F. filiformis, and an effective strategy for guiding F. filiformis breeding based on the population structure and pedigree relationship in future.
Collapse
Affiliation(s)
- Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Lei Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiqi Tang
- Marine and Agricultural Biotechnology Laboratory, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
- Weiqi Tang,
| | - Weiwei Xia
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yingli Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyu Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baogui Xie
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Yongxin Tao,
| |
Collapse
|
29
|
Papp V, Dai YC. What is the correct scientific name for “Fuling” medicinal mushroom? Mycology 2022; 13:207-211. [PMID: 35938080 PMCID: PMC9354628 DOI: 10.1080/21501203.2022.2089755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In recent years, the scientific names of many cultivated and well-known medicinal fungal species have been changed. However, the results of taxonomic and nomenclature works on these economically important fungi are often overlooked or ignored in applied researches. The incorrect use of scientific names may cause uncertainty in research and in the global medicinal mushroom market. In this paper, we briefly review the current taxonomy and nomenclature of “Fuling” medicinal mushroom and make a proposal for biochemists, pharmacists and businessmen on the correct use of scientific names related to this species. Based on the recent taxonomic results and nomenclatural proposals, the use of the names Wolfiporia extensa, W. cocos and especially Poria cocos for the “Fuling” mushroom are incorrect and misleading; therefore, the acceptance of the names Pachyma hoelen or Wolfiporia hoelen is recommended.
Collapse
Affiliation(s)
- Viktor Papp
- Department of Botany, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Yu-Cheng Dai
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
30
|
Liu X, Dong J, Liao J, Tian L, Qiu H, Wu T, Ge F, Zhu J, Shi L, Jiang A, Yu H, Zhao M, Ren A. Establishment of CRISPR/Cas9 Genome-Editing System Based on Dual sgRNAs in Flammulina filiformis. J Fungi (Basel) 2022; 8:jof8070693. [PMID: 35887449 PMCID: PMC9318071 DOI: 10.3390/jof8070693] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Flammulina filiformis, previously known as Asian Flammulina velutipes, is one of the most commercially important edible fungi, with nutritional value and medicinal properties worldwide. However, precision genome editing using CRISPR/Cas9, which is a revolutionary technology and provides a powerful tool for molecular breeding, has not been established in F. filiformis. Here, plasmids harboring expression cassettes of Basidiomycete codon-optimized Cas9 and dual sgRNAs targeting pyrG under the control of the gpd promoter and FfU6 promoter, respectively, were delivered into protoplasts of F. filiformis Dan3 strain through PEG-mediated transformation. The results showed that an efficient native U6 promoter of F. filiformis was identified, and ultimately several pyrG mutants exhibiting 5-fluorooric acid (5-FOA) resistance were obtained. Additionally, diagnostic PCR followed by Sanger sequencing revealed that fragment deletion between the two sgRNA target sites or small insertions and deletions (indels) were introduced in these pyrG mutants through the nonhomologous end joining (NHEJ) pathway, resulting in heritable changes in genomic information. Taken together, this is the first report in which a successful CRISPR/Cas9 genome-editing system based on dual sgRNAs was established in F. filiformis, which broadens the application of this advanced tool in Basidiomycetes.
Collapse
Affiliation(s)
- Xiaotian Liu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Jianghan Dong
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Jian Liao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Li Tian
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Hao Qiu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Tao Wu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Feng Ge
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Jing Zhu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Liang Shi
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Ailiang Jiang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Hanshou Yu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Mingwen Zhao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Ang Ren
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China
- Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China
- Correspondence: ; Tel./Fax: +86-25-84395602
| |
Collapse
|
31
|
Reactive Oxygen Species Distribution Involved in Stipe Gradient Elongation in the Mushroom Flammulina filiformis. Cells 2022; 11:cells11121896. [PMID: 35741023 PMCID: PMC9221348 DOI: 10.3390/cells11121896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
The mushroom stipe raises the pileus above the substrate into a suitable position for dispersing spores. The stipe elongates at different speeds along its length, with the rate of elongation decreasing in a gradient from the top to the base. However, the molecular mechanisms underlying stipe gradient elongation are largely unknown. Here, we used the model basidiomycete mushroom Flammulina filiformis to investigate the mechanism of mushroom stipe elongation and the role of reactive oxygen species (ROS) signaling in this process. Our results show that O2- and H2O2 exhibit opposite gradient distributions in the stipe, with higher O2- levels in the elongation region (ER), and higher H2O2 levels in the stable region (SR). Moreover, NADPH-oxidase-encoding genes are up-regulated in the ER, have a function in producing O2-, and positively regulate stipe elongation. Genes encoding manganese superoxide dismutase (MnSOD) are up-regulated in the SR, have a function in producing H2O2, and negatively regulate stipe elongation. Altogether, our data demonstrate that ROS (O2-/H2O2) redistribution mediated by NADPH oxidase and MnSODs is linked to the gradient elongation of the F. filiformis stipe.
Collapse
|
32
|
Sugawara R, Maekawa N, Sotome K, Nakagiri A, Endo N. Systematic revision of Hydnum species in Japan. Mycologia 2022; 114:413-452. [PMID: 35394899 DOI: 10.1080/00275514.2021.2024407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hydnum (Hydnaceae, Basidiomycota) exhibits endemic species diversity in East Asia; however, few comprehensive systematic studies have been conducted to date. Here, we performed morphological, ecological, phylogenetic, and biological evaluations of the taxonomy of Hydnum species in Japan. In total, 186 Japanese Hydnum specimens were used for morphological observations. Phylogenetic trees were constructed using sequence data of nuc rDNA internal transcribed spacer ITS1-5.8S-ITS2 (ITS) region and a portion of translation elongation factor 1-α (tef1). Intra- and interspecific mating tests using 78 monokaryotic strains of 13 species did not conflict with species delimitation inferred from their ITS and tef1 phylogenetic relationships. This study provides detailed morphological descriptions of 15 rigorously identified species from Japan, nine of which are described as new: H. alboluteum, H. albopallidum, H. pinicola, H. itachiharitake, H. minospororufescens, H. orientalbidum, H. subberkeleyanum, H. tomaense, and H. tottoriense. Three species documented in this work are new to Japan: H. boreorepandum, H. mulsicolor, and H. umbilicatum. The remaining three species (H. cremeoalbum, H. minus, and H. repando-orientale), previously reported from Japan, are redescribed using data from newly collected materials. We also transferred two old species (Hericium fimbrillatum and Sarcodon nauseofoetidus) from East Asian Hydnum into other genera.
Collapse
Affiliation(s)
- Ryo Sugawara
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101, Koyama, Tottori 680-8553, Japan
| | - Nitaro Maekawa
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyama, Tottori 680-8553, Japan
| | - Kozue Sotome
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyama, Tottori 680-8553, Japan
| | - Akira Nakagiri
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyama, Tottori 680-8553, Japan
| | - Naoki Endo
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyama, Tottori 680-8553, Japan
| |
Collapse
|
33
|
Fu Y, Yu Y, Tan H, Wang B, Peng W, Sun Q. Metabolomics reveals dopa melanin involved in the enzymatic browning of the yellow cultivars of East Asian golden needle mushroom (Flammulina filiformis). Food Chem 2022; 370:131295. [PMID: 34788955 DOI: 10.1016/j.foodchem.2021.131295] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 02/09/2023]
Abstract
Browning seriously causes postharvest deterioration of the yellow cultivars of Flammulina filiformis, yet the browning process and its mechanism have not been described. Changes of L*, a*, b* values, the browning and whiteness index during air contacted storage were evaluated, uncovering the great loss of brightness and meanwhile the accumulation of yellowness and redness. Browning tissue showed an increase of malondialdehyde, total phenolics, and browning-related enzyme activities of polyphenol oxidase and peroxidase, in contrast to the decrease of bioprotective catalase, superoxide, and dismutase. Non-targeted metabolomics revealed an upregulation of melanin synthesis under oxidation stress, and targeted LC-MS/MS verified the upregulation of l-dopa (3,4-dihydroxy-l-phenylalanine) during browning. Pyrrole-2,3,5-tricarboxylic acid was identified in the degradation products of browning pigments after alkaline hydrogen peroxide by LC-MS/MS, suggesting the existence of 5,6-dihydroxyindole-2-carboxylic acid derived units of eumelanin. Therefore, the biosynthesis of eumelanin via l-dopa pathway could participate in the enzymatic browning of postharvest F. filiformis.
Collapse
Affiliation(s)
- Yu Fu
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yang Yu
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan, Academy of Agricultural Sciences, Chengdu 610066, China
| | - Hao Tan
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan, Academy of Agricultural Sciences, Chengdu 610066, China; School of Bioengineering, Jiangnan University, Wuxi, China
| | - Bo Wang
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan, Academy of Agricultural Sciences, Chengdu 610066, China
| | - Weihong Peng
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan, Academy of Agricultural Sciences, Chengdu 610066, China
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
34
|
|
35
|
Ma S, Zhang H, Xu J. Characterization, Antioxidant and Anti-Inflammation Capacities of Fermented Flammulina velutipes Polyphenols. Molecules 2021; 26:molecules26206205. [PMID: 34684784 PMCID: PMC8537206 DOI: 10.3390/molecules26206205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/04/2022] Open
Abstract
This work investigated the preparation, characterization, antioxidant, and anti-inflammation capacities of Flammulina velutipes polyphenols (FVP) and fermented FVP (FFVP). The results revealed that the new syringic acid, accounting for 22.22%, was obtained after fermentation (FFVP). FFVP exhibits higher antioxidant and anti-inflammation activities than FVP, enhancing cell viability and phagocytosis, inhibiting the secretion of NO and ROS, and reducing the inflammatory response of RAW264.7 cells. This study revealed that FFVP provides a theoretical reference for in-depth study of its regulatory mechanisms and further development of functional antioxidants that are applicable in the food and health industry.
Collapse
Affiliation(s)
- Sheng Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200436, China;
- Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200436, China
| | - Hongcai Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200436, China;
- Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200436, China
- Correspondence: (H.Z.); (J.X.)
| | - Jianxiong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200436, China;
- Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200436, China
- Correspondence: (H.Z.); (J.X.)
| |
Collapse
|
36
|
Cao B, Haelewaters D, Schoutteten N, Begerow D, Boekhout T, Giachini AJ, Gorjón SP, Gunde-Cimerman N, Hyde KD, Kemler M, Li GJ, Liu DM, Liu XZ, Nuytinck J, Papp V, Savchenko A, Savchenko K, Tedersoo L, Theelen B, Thines M, Tomšovský M, Toome-Heller M, Urón JP, Verbeken A, Vizzini A, Yurkov AM, Zamora JC, Zhao RL. Delimiting species in Basidiomycota: a review. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00479-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Fang D, Wang C, Deng Z, Ma N, Hu Q, Zhao L. Microflora and umami alterations of different packaging material preserved mushroom (Flammulina filiformis) during cold storage. Food Res Int 2021; 147:110481. [PMID: 34399477 DOI: 10.1016/j.foodres.2021.110481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/24/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
In order to clarify the effect of nanocomposite-based packaging (NP) on umami and microflora characteristics of F. filiformis during cold storage, the contents of umami amino acids and 5'-nucleotides, equivalent umami concentration (EUC), and microflora succession were investigated. Results showed that NP could delay the degradation of umami components and inhibit bacterial growth in F. filiformis. At the initial stage, the dominant bacteria were Lactobacillus, Thermus and Acinetobacter. After 15 days of storage, the bacteria count in NP reached 7.63 lg cfu/g, which was significantly (P < 0.05) lower than that in control, and the major bacterial communities of packaged F. filiformis were Ewingella, Serratia and Pseudomonas. Moreover, the correlation analysis showed that Lactobacillus, Brevibacillus and Okibacterium were negatively correlated with AMP and IMP 5-nucleotides. Present work suggested that NP could enhance the umami flavor formation and improve the microbial community structure of F. filiformis, resulting in a better commercial quality. The results provided theoretical basis for large-scale applications of NP.
Collapse
Affiliation(s)
- Donglu Fang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Chaofan Wang
- Nanjing Institue of Supervision and Testing on Product Quality, Nanjing, Jiangsu 210046, PR China.
| | - Zilong Deng
- State Key Laboratory Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Ning Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210046, PR China.
| | - Qiuhui Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
38
|
Zhang Y, Mo M, Yang L, Mi F, Cao Y, Liu C, Tang X, Wang P, Xu J. Exploring the Species Diversity of Edible Mushrooms in Yunnan, Southwestern China, by DNA Barcoding. J Fungi (Basel) 2021; 7:310. [PMID: 33920593 PMCID: PMC8074183 DOI: 10.3390/jof7040310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Yunnan Province, China, is famous for its abundant wild edible mushroom diversity and a rich source of the world's wild mushroom trade markets. However, much remains unknown about the diversity of edible mushrooms, including the number of wild edible mushroom species and their distributions. In this study, we collected and analyzed 3585 mushroom samples from wild mushroom markets in 35 counties across Yunnan Province from 2010 to 2019. Among these samples, we successfully obtained the DNA barcode sequences from 2198 samples. Sequence comparisons revealed that these 2198 samples likely belonged to 159 known species in 56 different genera, 31 families, 11 orders, 2 classes, and 2 phyla. Significantly, 51.13% of these samples had sequence similarities to known species at lower than 97%, likely representing new taxa. Further phylogenetic analyses on several common mushroom groups including 1536 internal transcribed spacer (ITS) sequences suggested the existence of 20 new (cryptic) species in these groups. The extensive new and cryptic species diversity in wild mushroom markets in Yunnan calls for greater attention for the conservation and utilization of these resources. Our results on both the distinct barcode sequences and the distributions of these sequences should facilitate new mushroom species discovery and forensic authentication of high-valued mushrooms and contribute to the scientific inventory for the management of wild mushroom markets.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
| | - Meizi Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Liu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Fei Mi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
| | - Yang Cao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
| | - Chunli Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
| | - Xiaozhao Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
| | - Pengfei Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
39
|
Wu F, Li SJ, Dong CH, Dai YC, Papp V. The Genus Pachyma (Syn. Wolfiporia) Reinstated and Species Clarification of the Cultivated Medicinal Mushroom "Fuling" in China. Front Microbiol 2020; 11:590788. [PMID: 33424793 PMCID: PMC7793888 DOI: 10.3389/fmicb.2020.590788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
The fungus "Fuling" has been used in Chinese traditional medicine for more than 2000 years, and its sclerotia have a wide range of biological activities including antitumour, immunomodulation, anti-inflammation, antioxidation, anti-aging etc. This prized medicinal mushroom also known as "Hoelen" is resurrected from a piece of pre-Linnean scientific literature. Fries treated it as Pachyma hoelen Fr. and mentioned that it was cultivated on pine trees in China. However, this name had been almost forgotten, and Poria cocos (syn. Wolfiporia cocos), originally described from North America, and known as "Tuckahoe" has been applied to "Fuling" in most publications. Although Merrill mentioned a 100 years ago that Asian Pachyma hoelen and North American P. cocos are similar but different, no comprehensive taxonomical studies have been carried out on the East Asian Pachyma hoelen and its related species. Based on phylogenetic analyses and morphological examination on both the sclerotia and the basidiocarps which are very seldomly developed, the East Asian samples of Pachyma hoelen including sclerotia, commercial strains for cultivation and fruiting bodies, nested in a strongly supported, homogeneous lineage which clearly separated from the lineages of North American Wolfiporia cocos and other species. So we confirm that the widely cultivated "Fuling" Pachyma hoelen in East Asia is not conspecific with the North American Wolfiporia cocos. Based on the changes in Art. 59 of the International Code of Nomenclature for algae, fungi, and plants, the generic name Pachyma, which was sanctioned by Fries, has nomenclatural priority (ICN, Art. F.3.1), and this name well represents the economically important stage of the generic type. So we propose to use Pachyma rather than Wolfiporia, and subsequently Pachyma hoelen and Pachyma cocos are the valid names for "Fuling" in East Asia and "Tuckahoe" in North America, respectively. In addition, a new combination, Pachyma pseudococos, is proposed. Furthermore, it seems that Pachyma cocos is a species complex, and that three species exist in North America.
Collapse
Affiliation(s)
- Fang Wu
- Institute of Microbilogy, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Shou-Jian Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cai-Hong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Cheng Dai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Viktor Papp
- Institute of Horticultural Plant Biology, Szent István University, Budapest, Hungary
| |
Collapse
|
40
|
Chen J, Li JM, Tang YJ, Ma K, Li B, Zeng X, Liu XB, Li Y, Yang ZL, Xu WN, Xie BG, Liu HW, Guo SX. Genome-wide analysis and prediction of genes involved in the biosynthesis of polysaccharides and bioactive secondary metabolites in high-temperature-tolerant wild Flammulina filiformis. BMC Genomics 2020; 21:719. [PMID: 33069230 PMCID: PMC7568368 DOI: 10.1186/s12864-020-07108-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/28/2020] [Indexed: 11/28/2022] Open
Abstract
Background Flammulina filiformis (previously known as Asian F. velutipes) is a popular commercial edible mushroom. Many bioactive compounds with medicinal effects, such as polysaccharides and sesquiterpenoids, have been isolated and identified from F. filiformis, but their biosynthesis and regulation at the molecular level remains unclear. In this study, we sequenced the genome of the wild strain F. filiformis Liu355, predicted its biosynthetic gene clusters (BGCs) and profiled the expression of these genes in wild and cultivar strains and in different developmental stages of the wild F. filiformis strain by a comparative transcriptomic analysis. Results We found that the genome of the F. filiformis was 35.01 Mb in length and harbored 10,396 gene models. Thirteen putative terpenoid gene clusters were predicted and 12 sesquiterpene synthase genes belonging to four different groups and two type I polyketide synthase gene clusters were identified in the F. filiformis genome. The number of genes related to terpenoid biosynthesis was higher in the wild strain (119 genes) than in the cultivar strain (81 genes). Most terpenoid biosynthesis genes were upregulated in the primordium and fruiting body of the wild strain, while the polyketide synthase genes were generally upregulated in the mycelium of the wild strain. Moreover, genes encoding UDP-glucose pyrophosphorylase and UDP-glucose dehydrogenase, which are involved in polysaccharide biosynthesis, had relatively high transcript levels both in the mycelium and fruiting body of the wild F. filiformis strain. Conclusions F. filiformis is enriched in a number of gene clusters involved in the biosynthesis of polysaccharides and terpenoid bioactive compounds and these genes usually display differential expression between wild and cultivar strains, even in different developmental stages. This study expands our knowledge of the biology of F. filiformis and provides valuable data for elucidating the regulation of secondary metabolites in this unique F. filiformis strain.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| | - Jia-Mei Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yan-Jing Tang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ke Ma
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Bing Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xu Zeng
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xiao-Bin Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. R. China
| | - Yang Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhu-Liang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. R. China
| | - Wei-Nan Xu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Bao-Gui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Hong-Wei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Shun-Xing Guo
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
41
|
Liu XB, Xia EH, Li M, Cui YY, Wang PM, Zhang JX, Xie BG, Xu JP, Yan JJ, Li J, Nagy LG, Yang ZL. Transcriptome data reveal conserved patterns of fruiting body development and response to heat stress in the mushroom-forming fungus Flammulina filiformis. PLoS One 2020; 15:e0239890. [PMID: 33064719 PMCID: PMC7567395 DOI: 10.1371/journal.pone.0239890] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Mushroom-forming fungi are complex multicellular organisms that form the basis of a large industry, yet, our understanding of the mechanisms of mushroom development and its responses to various stresses remains limited. The winter mushroom (Flammulina filiformis) is cultivated at a large commercial scale in East Asia and is a species with a preference for low temperatures. This study investigated fruiting body development in F. filiformis by comparing transcriptomes of 4 developmental stages, and compared the developmental genes to a 200-genome dataset to identify conserved genes involved in fruiting body development, and examined the response of heat sensitive and -resistant strains to heat stress. Our data revealed widely conserved genes involved in primordium development of F. filiformis, many of which originated before the emergence of the Agaricomycetes, indicating co-option for complex multicellularity during evolution. We also revealed several notable fruiting-specific genes, including the genes with conserved stipe-specific expression patterns and the others which related to sexual development, water absorption, basidium formation and sporulation, among others. Comparative analysis revealed that heat stress induced more genes in the heat resistant strain (M1) than in the heat sensitive one (XR). Of particular importance are the hsp70, hsp90 and fes1 genes, which may facilitate the adjustment to heat stress in the early stages of fruiting body development. These data highlighted novel genes involved in complex multicellular development in fungi and aid further studies on gene function and efforts to improve the productivity and heat tolerance in mushroom-forming fungi.
Collapse
Affiliation(s)
- Xiao-Bin Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
| | - En-Hua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Meng Li
- Yunnan Tobacco Science Research Institute, Kunming, China
| | - Yang-Yang Cui
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
| | - Pan-Meng Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
| | - Jin-Xia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bao-Gui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian-Ping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jun-Jie Yan
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - László G. Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Szeged, Hungary
| | - Zhu L. Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
- * E-mail:
| |
Collapse
|
42
|
Meng L, Chou T, Jiang S, Wang L, Zhu M, Mukhtar I, Xie B, Wang W. Characterization and expression pattern analysis of pheromone receptor-like genes in Winter Mushroom Flammulina filiformis. Arch Microbiol 2020; 202:2671-2678. [PMID: 32719947 DOI: 10.1007/s00203-020-01990-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/02/2020] [Accepted: 07/18/2020] [Indexed: 10/23/2022]
Abstract
Pheromone receptor-like genes (PRLGs) belong to the G protein-coupled receptors (GPCRs) family that interacts with biotic and abiotic stimulants and transmits signals to intracellular downstream pathways in eukaryotic cells. In this study, we investigated the structure and expressions patterns of PRLGs in Winter Mushroom Flammulina filiformis. Based on the alignment analysis, the structure of PRLGs was found conserved in F. filiformis strains expect few single-nucleotide polymorphism (SNP) sites. Six PRLGs were found at five different unlinked loci, scattered in the genomes of F. filiformis strains. These genes contain 2-5 introns; however, the introns were not found in the same relative positions regarding the encoded protein sequences in tested strains of F. filiformis. Three conserved motifs were identified in peptides structures of PRLGs, however, FfSte3.s6 contained only two types, suggests its difference in evolution and function. We have further analyzed the expression patterns of each PRLGs in different developmental stages of the fruiting body in F. filiformis by quantitative real-time polymerase chain reaction (qRT-PCR). The results exhibited expression variation of PRLGs at different developmental stages of the F. filiformis. Especially, FfSte3.s1 and FfSte3.s2 exhibited maximum expression level in mycelia stage. Other PRLGs exhibited high expression level in fruiting body stages. This study suggests that PRLGs could be vital genes involving in fruiting body development in F. filiformis. However, further studies could be performed to reveal their specific functional pathways in the fruiting body development.
Collapse
Affiliation(s)
- Li Meng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tiansheng Chou
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Siyuan Jiang
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Li Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Mengjuan Zhu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Irum Mukhtar
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
43
|
Wu T, Zhang Z, Hu C, Zhang L, Wei S, Li S. A WD40 Protein Encoding Gene Fvcpc2 Positively Regulates Mushroom Development and Yield in Flammulina velutipes. Front Microbiol 2020; 11:498. [PMID: 32273873 PMCID: PMC7113406 DOI: 10.3389/fmicb.2020.00498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/09/2020] [Indexed: 11/16/2022] Open
Abstract
Ascomycota and Basidiomycota are two closely related phyla and fungi in two phyla share some common morphological developmental process during fruiting body formation. In Neurospora crassa, the Gβ-like protein CPC-2 with a seven-WD40 repeat domain was previously reported. By transforming CPC-2 ortholog encoding genes, from 7 different fungal species across Ascomycota and Basidiomycota, into the cpc-2 deletion mutant of N. crassa, we demonstrate that all tested CPC-2 ortholog genes were able to complement the defects of the cpc-2 deletion mutant in sexual development, indicating that CPC-2 proteins from Ascomycota and Basidiomycota have the similar cellular function. Using Flammulina velutipes as a model system for mushroom species, the CPC-2 ortholog FvCPC2 was characterized. Fvcpc2 increased transcription during fruiting body development. Knockdown of Fvcpc2 by RNAi completely impaired fruiting body formation. In three Fvcpc2 knockdown mutants, transcriptional levels of genes encoding adenylate cyclase and protein kinase A catalytic subunit were significantly lower and colony growth became slower than wild type. The addition of cAMP or the PKA-activator 8-Bromo-cAMP into the medium restored the Fvcpc2 knockdown mutants to the wild-type colony growth phenotype, suggesting that the involvement of cAMP production in the regulatory mechanisms of FvCPC2. Knockdown of Fvcpc2 also weakened transcriptional responses to sexual development induction by some genes related to fruiting body development, including 4 jacalin-related lectin encoding genes, 4 hydrophobin encoding genes, and 3 functionally-unknown genes, suggesting the participation of these genes in the mechanisms by which FvCPC2 regulates fruiting body development. All three Fvcpc2 overexpression strains displayed increased mushroom yield and shortened cultivation time compared to wild type, suggesting that Fvcpc2 can be a promising reference gene for Winter Mushroom breeding. Since the orthologs of FvCPC2 were highly conserved and specifically expressed during fruiting body development in different edible mushrooms, genes encoding FvCPC2 orthologs in other mushroom species also have potential application in breeding.
Collapse
Affiliation(s)
- Taju Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenying Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Long Zhang
- Shandong Jinniu Biotech Company Limited, Jinan, China
| | - Shenglong Wei
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, China
| | - Shaojie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Yan JJ, Tong ZJ, Liu YY, Li YN, Zhao C, Mukhtar I, Tao YX, Chen BZ, Deng YJ, Xie BG. Comparative Transcriptomics of Flammulina filiformis Suggests a High CO 2 Concentration Inhibits Early Pileus Expansion by Decreasing Cell Division Control Pathways. Int J Mol Sci 2019; 20:ijms20235923. [PMID: 31775357 PMCID: PMC6929049 DOI: 10.3390/ijms20235923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 01/05/2023] Open
Abstract
Carbon dioxide is commonly used as one of the significant environmental factors to control pileus expansion during mushroom cultivation. However, the pileus expansion mechanism related to CO2 is still unknown. In this study, the young fruiting bodies of a popular commercial mushroom Flammulina filiformis were cultivated under different CO2 concentrations. In comparison to the low CO2 concentration (0.05%), the pileus expansion rates were significantly lower under a high CO2 concentration (5%). Transcriptome data showed that the up-regulated genes enriched in high CO2 concentration treatments mainly associated with metabolism processes indicated that the cell metabolism processes were active under high CO2 conditions. However, the gene ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with cell division processes contained down-regulated genes at both 12 h and 36 h under a high concentration of CO2. Transcriptome and qRT-PCR analyses demonstrated that a high CO2 concentration had an adverse effect on gene expression of the ubiquitin–proteasome system and cell cycle–yeast pathway, which may decrease the cell division ability and exhibit an inhibitory effect on early pileus expansion. Our research reveals the molecular mechanism of inhibition effects on early pileus expansion by elevated CO2, which could provide a theoretical basis for a CO2 management strategy in mushroom cultivation.
Collapse
Affiliation(s)
- Jun-Jie Yan
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
| | - Zong-Jun Tong
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yuan-Yuan Liu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
| | - Yi-Ning Li
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
| | - Chen Zhao
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
| | - Irum Mukhtar
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Yong-Xin Tao
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Bing-Zhi Chen
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - You-Jin Deng
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- Correspondence: (Y.-J.D.); (B.-G.X.); Tel.: +86-591-8378-9277 (B.-G.X.)
| | - Bao-Gui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (J.-J.Y.); (Z.-J.T.); (Y.-Y.L.); (Y.-N.L.); (C.Z.); (I.M.); (Y.-X.T.); (B.-Z.C.)
- Correspondence: (Y.-J.D.); (B.-G.X.); Tel.: +86-591-8378-9277 (B.-G.X.)
| |
Collapse
|
45
|
|
46
|
|
47
|
Holec J, Kunca V, Kolařík M. Tricholomopsis badinensis sp. nov. and T. sulphureoides—two rare fungi of European old-growth forests. Mycol Prog 2019. [DOI: 10.1007/s11557-018-1449-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
48
|
Biological and chemical diversity go hand in hand: Basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnol Adv 2019; 37:107344. [PMID: 30738916 DOI: 10.1016/j.biotechadv.2019.01.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
Abstract
The Basidiomycota constitutes the second largest higher taxonomic group of the Fungi after the Ascomycota and comprises over 30.000 species. Mycelial cultures of Basidiomycota have already been studied since the 1950s for production of antibiotics and other beneficial secondary metabolites. Despite the fact that unique and selective compounds like pleuromutilin were obtained early on, it took several decades more until they were subjected to a systematic screening for antimicrobial and anticancer activities. These efforts led to the discovery of the strobilurins and several hundreds of further compounds that mainly constitute terpenoids. In parallel the traditional medicinal mushrooms of Asia were also studied intensively for metabolite production, aimed at finding new therapeutic agents for treatment of various diseases including metabolic disorders and the central nervous system. While the evaluation of this organism group has in general been more tedious as compared to the Ascomycota, the chances to discover new metabolites and to develop them further to candidates for drugs, agrochemicals and other products for the Life Science industry have substantially increased over the past decade. This is owing to the revolutionary developments in -OMICS techniques, bioinformatics, analytical chemistry and biotechnological process technology, which are steadily being developed further. On the other hand, the new developments in polythetic fungal taxonomy now also allow a more concise selection of previously untapped organisms. The current review is dedicated to summarize the state of the art and to give an outlook to further developments.
Collapse
|
49
|
Agronomic and environmental factors affecting cultivation of the winter mushroom or Enokitake: achievements and prospects. Appl Microbiol Biotechnol 2019; 103:2469-2481. [DOI: 10.1007/s00253-019-09652-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/25/2023]
|