1
|
Zhao HJ, Doilom M, Mapook A, Wang G, Hyde KD, Dong W. New Insights into Tetraplosphaeriaceae Based on Taxonomic Investigations of Bambusicolous Fungi and Freshwater Fungi. J Fungi (Basel) 2024; 10:319. [PMID: 38786674 PMCID: PMC11121975 DOI: 10.3390/jof10050319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Species within Tetraplosphaeriaceae have been frequently documented in recent years with the extensive investigations of microfungi along a latitudinal gradient from north to south in the Asian/Australian region. Both bamboo substrates and freshwater habitats serve as extensive reservoirs, hosting a rich diversity of fungi that exhibit broad geographical distributions. The most common fungi in these two environments are generally distributed in distinct families. However, our statistics have revealed an intriguingly distinct preference of Tetraplosphaeriaceae species for inhabiting both bamboo substrates and freshwater habitats. The genera Pseudotetraploa (100%) and Triplosphaeria (100%) exhibit a strong preference, followed by Shrungabeeja (71%) and Quadricrura (67%). Our taxonomic and phylogenetic study of microfungi in southern China have identified four additional novel species, viz., Aquatisphaeria bambusae sp. nov., Pseudotetraploa phyllostachydis sp. nov., Pseudotetraploa yangjiangensis sp. nov., and Tetraploa submersa sp. nov. from bamboo substrates and freshwater habitats. In addition, Aquatisphaeria thailandica has previously been documented from freshwater habitats in Thailand; however, we have once again isolated this species from decaying bamboo substrates in Guangdong, China. The new findings substantiate our hypothesis that the preference of Tetraplosphaeriaceae species for colonizing bamboo substrates and freshwater habitats will be more evident through more extensive investigations conducted in such environments.
Collapse
Affiliation(s)
- Hai-Jun Zhao
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (H.-J.Z.); (K.D.H.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Mingkwan Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (H.-J.Z.); (K.D.H.)
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Gennuo Wang
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany;
| | - Kevin D. Hyde
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (H.-J.Z.); (K.D.H.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (H.-J.Z.); (K.D.H.)
| |
Collapse
|
2
|
Pereira DS, Phillips AJL. Palm Fungi and Their Key Role in Biodiversity Surveys: A Review. J Fungi (Basel) 2023; 9:1121. [PMID: 37998926 PMCID: PMC10672035 DOI: 10.3390/jof9111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Over the past three decades, a wealth of studies has shown that palm trees (Arecaceae) are a diverse habitat with intense fungal colonisation, making them an important substratum to explore fungal diversity. Palm trees are perennial, monocotyledonous plants mainly restricted to the tropics that include economically important crops and highly valued ornamental plants worldwide. The extensive research conducted in Southeast Asia and Australasia indicates that palm fungi are undoubtedly a taxonomically diverse assemblage from which a remarkable number of new species is continuously being reported. Despite this wealth of data, no recent comprehensive review on palm fungi exists to date. In this regard, we present here a historical account and discussion of the research on the palm fungi to reflect on their importance as a diverse and understudied assemblage. The taxonomic structure of palm fungi is also outlined, along with comments on the need for further studies to place them within modern DNA sequence-based classifications. Palm trees can be considered model plants for studying fungal biodiversity and, therefore, the key role of palm fungi in biodiversity surveys is discussed. The close association and intrinsic relationship between palm hosts and palm fungi, coupled with a high fungal diversity, suggest that the diversity of palm fungi is still far from being fully understood. The figures suggested in the literature for the diversity of palm fungi have been revisited and updated here. As a result, it is estimated that there are about 76,000 species of palm fungi worldwide, of which more than 2500 are currently known. This review emphasises that research on palm fungi may provide answers to a number of current fungal biodiversity challenges.
Collapse
Affiliation(s)
- Diana S. Pereira
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Alan J. L. Phillips
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
3
|
Sun YR, Liu NG, Hyde KD, Jayawardena RS, Wang Y. Pleocatenata chiangraiensis gen. et. sp. nov. (Pleosporales, Dothideomycetes) from medicinal plants in northern Thailand. MycoKeys 2022; 87:77-98. [PMID: 35210923 PMCID: PMC8857139 DOI: 10.3897/mycokeys.87.79433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022] Open
Abstract
Pleocatenata, a new genus, is introduced with its type species, Pleocatenatachiangraiensis, which was isolated from withered twigs of two medicinal plants, Clerodendrumquadriloculare (Blanco) Merr (Verbenaceae) and Tarennastellulata (Hook.f.) Ridl (Rubiaceae) in northern Thailand. The genus is characterized by mononematous, septate, brown or dark brown conidiophores, monotretic conidiogenous cells and catenate, obclavate, olivaceous to blackish brown conidia. Phylogenetic analysis of combined LSU, SSU, tef1-α, rpb2 and ITS sequence data showed Pleocatenata forms a distinct phylogenetic lineage in Pleosporales, Dothideomycetes. Therefore, we treat Pleocatenata as Pleosporales genera incertae sedis based on morphology and phylogenetic analyses. Descriptions and illustrations of the new taxa are provided, and it is compared with morphologically similar genera.
Collapse
|
4
|
Taxonomy and Phylogeny of Novel and Extant Taxa in Pleosporales Associated with Mangifera indica from Yunnan, China (Series I). J Fungi (Basel) 2022; 8:jof8020152. [PMID: 35205906 PMCID: PMC8876165 DOI: 10.3390/jof8020152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Pleosporales is the largest fungal order with a worldwide distribution in terrestrial and aquatic environments. During investigations of saprobic fungi associated with mango (Mangifera indica) in Baoshan and Honghe, Yunnan, China, fungal taxa belonging to pleosporales were collected. Morphological examinations and phylogenetic analyses of ITS, LSU, SSU, rpb2 and tef1-α loci were used to identify the fungal taxa. A new genus, Mangifericomes; four new species, namely Mangifericomes hongheensis, Neomassaria hongheensis, Paramonodictys hongheensis, and Paramonodictys yunnanensis; and six new host and country records, namely Byssosphaeria siamensis, Crassiparies quadrisporus, Paradictyoarthrinium aquatica, Phaeoseptum mali, Torula fici, and Vaginatispora amygdali, are introduced. Photoplates, full descriptions, and phylogenetic trees to show the placement of new and known taxa are provided.
Collapse
|
5
|
Species concepts of Dothideomycetes: classification, phylogenetic inconsistencies and taxonomic standardization. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00485-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Devadatha B, Jones EBG, Pang KL, Abdel-Wahab MA, Hyde KD, Sakayaroj J, Bahkali AH, Calabon MS, Sarma VV, Sutreong S, Zhang SN. Occurrence and geographical distribution of mangrove fungi. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-020-00468-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Abstract
AbstractFreshwater Dothideomycetes are a highly diverse group of fungi, which are mostly saprobic in freshwater habitats worldwide. They are important decomposers of submerged woody debris and leaves in water. In this paper, we outline the genera of freshwater Dothideomycetes with notes and keys to species. Based on multigene analyses and morphology, we introduce nine new genera, viz. Aquimassariosphaeria, Aquatospora, Aquihelicascus, Fusiformiseptata, Neohelicascus, Neojahnula, Pseudojahnula, Purpureofaciens, Submersispora; 33 new species, viz. Acrocalymma bipolare, Aquimassariosphaeria kunmingensis, Aquatospora cylindrica, Aquihelicascus songkhlaensis, A. yunnanensis, Ascagilis submersa, A. thailandensis, Bambusicola aquatica, Caryospora submersa, Dictyocheirospora thailandica, Fusiformiseptata crocea, Helicosporium thailandense, Hongkongmyces aquaticus, Lentistoma aquaticum, Lentithecium kunmingense, Lindgomyces aquaticus, Longipedicellata aquatica, Neohelicascus submersus, Neohelicomyces dehongensis, N. thailandicus, Neohelicosporium submersum, Nigrograna aquatica, Occultibambusa kunmingensis, Parabambusicola aquatica, Pseudoasteromassaria aquatica, Pseudoastrosphaeriella aquatica, Pseudoxylomyces aquaticus, Purpureofaciens aquatica, Roussoella aquatica, Shrungabeeja aquatica, Submersispora variabilis, Tetraploa puzheheiensis, T. yunnanensis; 16 new combinations, viz. Aquimassariosphaeria typhicola, Aquihelicascus thalassioideus, Ascagilis guttulaspora, A. queenslandica, A. seychellensis, A. sunyatsenii, Ernakulamia xishuangbannaensis, Neohelicascus aquaticus, N. chiangraiensis, N. egyptiacus, N. elaterascus, N. gallicus, N. unilocularis, N. uniseptatus, Neojahnula australiensis, Pseudojahnula potamophila; 17 new geographical and habitat records, viz. Aliquandostipite khaoyaiensis, Aquastroma magniostiolata, Caryospora aquatica, C. quercus, Dendryphiella vinosa, Ernakulamia cochinensis, Fissuroma neoaggregatum, Helicotruncatum palmigenum, Jahnula rostrata, Neoroussoella bambusae, N. leucaenae, Occultibambusa pustula, Paramonodictys solitarius, Pleopunctum pseudoellipsoideum, Pseudocapulatispora longiappendiculata, Seriascoma didymosporum, Shrungabeeja vadirajensis and ten new collections from China and Thailand, viz. Amniculicola guttulata, Aquaphila albicans, Berkleasmium latisporum, Clohesyomyces aquaticus, Dictyocheirospora rotunda, Flabellascoma fusiforme, Pseudoastrosphaeriella bambusae, Pseudoxylomyces elegans, Tubeufia aquatica and T. cylindrothecia. Dendryphiella phitsanulokensis and Tubeufia roseohelicospora are synonymized with D. vinosa and T. tectonae, respectively. Six orders, 43 families and 145 genera which belong to freshwater Dothideomycetes are reviewed. Of these, 46 genera occur exclusively in freshwater habitats. A world map illustrates the distribution of freshwater Dothideomycetes.
Collapse
|
8
|
Zhang SN, D Hyde K, Gareth Jones EB, Jeewon R, Cheewangkoon R, Liu JK. Striatiguttulaceae, a new pleosporalean family to accommodate Longicorpus and Striatiguttula gen. nov. from palms. MycoKeys 2019; 49:99-129. [PMID: 31043854 PMCID: PMC6477835 DOI: 10.3897/mycokeys.49.30886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/29/2019] [Indexed: 01/10/2023] Open
Abstract
Palms represent the most morphological diverse monocotyledonous plants and support a vast array of fungi. Recent examinations of palmicolous fungi in Thailand led to the discovery of a group of morphologically similar and interesting taxa. A polyphasic approach based on morphology, multi-gene phylogenetic analyses and divergence time estimates supports the establishment of a novel pleosporalean family Striatiguttulaceae, which diversified approximately 39 (20–63) MYA (crown age) and 60 (35–91) MYA (stem age). Striatiguttulaceae is characterized by stromata or ascomata with a short to long neck, trabeculate pseudoparaphyses and fusiform to ellipsoidal, 1–3-septate ascospores, with longitudinal striations and paler end cells, surrounded by a mucilaginous sheath. Multi-gene phylogenetic analysis showed that taxa of Striatiguttulaceae form a well-supported and distinct monophyletic clade in Pleosporales, and related to Ligninsphaeriaceae and Pseudoastrosphaeriellaceae. However, these families can be morphologically demarcated by the slit-like ascomata and extremely large ascospores in Ligninsphaeriaceae and the rather narrow fusiform ascospores in Pseudoastrosphaeriellaceae. Eight strains of Striatiguttulaceae formed two monophyletic sub-clades, which can be recognized as Longicorpusgen. nov. and Striatiguttulagen. nov. Morphologically, the genus Longicorpus can be differentiated from Striatiguttula by its elongated immersed ascomata and fusiform ascospores with relatively larger middle cells and paler end cells. Two new species Striatiguttulanypae and S.phoenicis, and one new combination, Longicorpusstriataspora are introduced with morphological details, and phylogenetic relationships are discussed based on DNA sequence data.
Collapse
Affiliation(s)
- Sheng-Nan Zhang
- Center for Bioinformatics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China.,Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Science, Guiyang 550006, P.R. China.,Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | | | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius, 80837, Mauritius
| | - Ratchadawan Cheewangkoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jian-Kui Liu
- Center for Bioinformatics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China.,Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Science, Guiyang 550006, P.R. China
| |
Collapse
|