1
|
Mageswari A, Choi Y, Thao LD, Lee D, Kim DH, Park MS, Hong SB. Re-Identification of Aspergillus Subgenus Circumdati Strains in Korea Led to the Discovery of Three Unrecorded Species. MYCOBIOLOGY 2023; 51:288-299. [PMID: 37929011 PMCID: PMC10621256 DOI: 10.1080/12298093.2023.2257997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/17/2023] [Indexed: 11/07/2023]
Abstract
Aspergillus is one of the largest and diverse genera of fungi with huge economical, biotechnological, and social significance. Taxonomically, Aspergillus is divided into six subgenera comprising 27 sections. In this study, 235 strains of Aspergillus subgenus Circumdati (section: Candidi, Circumdati, Flavi, Flavipedes, Nigri, and Terrei) preserved at the Korean Agricultural Culture Collection (KACC) were analyzed and re-identified using a combined dataset of partial β-tubulin (BenA), Calmodulin (CaM) gene sequences and morphological data. We confirmed nineteen species to be priorly reported in Korea (A. neotritici, A. terreus, A. floccosus, A. allahabadii, A. steynii, A. westerdijkiae, A. ochraceus, A. ostianus, A. sclerotiorum, A. luchuensis, A. tubingensis, A. niger, A. welwitschiae, A. japonicus, A. nomius, A. tamarii, A. parasiticus, A. flavi, and A. oryzae). Among the studied strains, three species (A. subalbidus, A. iizukae, and A. uvarum), previously unreported or not officially documented, were discovered in Korea, to the best of our knowledge. We have given a detailed description of the characteristic features of the three species, which remain uncharted in Korea.
Collapse
Affiliation(s)
- Anbazhagan Mageswari
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA, Wanju, Republic of Korea
| | - Yunhee Choi
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA, Wanju, Republic of Korea
| | - Le Dinh Thao
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA, Wanju, Republic of Korea
- Plant Protection Research Institute, Hanoi, Vietnam
| | - Daseul Lee
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA, Wanju, Republic of Korea
| | - Dong-Hyun Kim
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA, Wanju, Republic of Korea
| | - Myung Soo Park
- Department of Crops and Forestry, Korea National University of Agriculture and Fisheries, Jeonju, South Korea
| | - Seung-Beom Hong
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA, Wanju, Republic of Korea
| |
Collapse
|
2
|
da Silva Santos AC, do Nascimento Barbosa R, Cavalcanti AD, de Souza-Motta CM, de Oliveira NT, Tiago PV, Moreira KA. Molecular identification of Brazilian Fusarium strains: sources of proteases with milk-clotting properties. Braz J Microbiol 2023; 54:1665-1674. [PMID: 37266822 PMCID: PMC10485214 DOI: 10.1007/s42770-023-01016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 05/24/2023] [Indexed: 06/03/2023] Open
Abstract
Fusarium is a genus of ubiquitous fungi that comprises mycotoxigenic animal and plant pathogens. These fungi have the ability to exploit a wide range of substrates and hosts, indicating their great potential for enzyme production; however, this aspect is understudied. Therefore, the present study aimed for revaluating the identity of twenty-three Fusarium strains maintained in the University Recife Mycology (URM) culture collection, Brazil, and to evaluate their potential for proteases production and the milk-clotting activity of these proteases. According to phylogenetic analysis of translation elongation factor 1-alpha (TEF1) gene partial sequences, these strains belonged to 12 species representing four species complexes: Fusarium concolor, F. fujikuroi, F. incarnatum-equiseti, and F. oxysporum. Four of these species are putatively novel to science. Notably, novel associations of Fusarium spp. with certain hosts/substrates were documented. The proteolytic activity ranged from 1.67 U ml-1 to 22.03 U ml-1 among the evaluated fungal isolates, with specific proteolytic activity reaching 205.86 U mg-1. The values for coagulant activity and specific activity were up to 157.14 U ml-1 and 1,424.11 U mg-1, respectively. These results indicate the potential of URM Fusarium strains as a source for the production of enzymes of industrial interest. Additionally, they reinforce the importance of applying DNA-based methods for reviewing the identification of fungal strains preserved in biodiversity repositories.
Collapse
Affiliation(s)
- Ana Carla da Silva Santos
- Departamento de Micologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego 1235, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil.
- Universidade Federal Do Agreste de Pernambuco, Av. Bom Pastor, Boa Vista, Garanhuns, Pernambuco, 55292-270, Brazil.
| | - Renan do Nascimento Barbosa
- Departamento de Micologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego 1235, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil
| | - Anthony Dias Cavalcanti
- Departamento de Micologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego 1235, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil
| | - Cristina Maria de Souza-Motta
- Departamento de Micologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego 1235, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil
| | - Neiva Tinti de Oliveira
- Departamento de Micologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego 1235, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil
| | - Patricia Vieira Tiago
- Departamento de Micologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego 1235, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil
| | - Keila Aparecida Moreira
- Universidade Federal Do Agreste de Pernambuco, Av. Bom Pastor, Boa Vista, Garanhuns, Pernambuco, 55292-270, Brazil
| |
Collapse
|
3
|
Cañete-Gibas CF, Patterson HP, Sanders CJ, Mele J, Fan H, David M, Wiederhold NP. Species Distribution and Antifungal Susceptibilities of Aspergillus Section Terrei Isolates in Clinical Samples from the United States and Description of Aspergillus pseudoalabamensis sp. nov. Pathogens 2023; 12:pathogens12040579. [PMID: 37111465 PMCID: PMC10142542 DOI: 10.3390/pathogens12040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Aspergillus section Terrei consists of numerous cryptic species in addition to A. terreus sensu stricto. The treatment of invasive infections caused by these fungi may pose a unique challenge prior to diagnosis and species identification, in that they are often clinically resistant to amphotericin B, with poor outcomes and low survival rates in patients treated with this polyene. Data on the species distributions and susceptibility profiles of isolates within section Terrei from the United States (U.S.) are limited. Here, we report the species distributions and susceptibility profiles for amphotericin B, isavuconazole, itraconazole, posaconazole, voriconazole, and micafungin against 278 clinical isolates of this section from institutions across the U.S. collected over a 52-month period. Species identification was performed by DNA sequence analysis and phenotypic characterization. Susceptibility testing was performed using the CLSI broth microdilution method. The majority of isolates were identified as Aspergillus terreus sensu stricto (69.8%), although several other cryptic species were also identified. Most were cultured from specimens collected from the respiratory tract. Posaconazole demonstrated the most potent activity of the azoles (MIC range ≤ 0.03-1 mg/L), followed by itraconazole (≤0.03-2 mg/L), voriconazole, and isavuconazole (0.125-8 mg/L for each). Amphotericin B demonstrated reduced in vitro susceptibility against this section (MIC range 0.25-8 mg/L), although this appeared to be species-dependent. A new species within this section, A. pseudoalabamensis, is also described. Our results, which are specific to the U.S., are similar to previous surveillance studies of the Aspergillus section Terrei.
Collapse
Affiliation(s)
- Connie F Cañete-Gibas
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Fungus Testing Laboratory UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Hoja P Patterson
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Fungus Testing Laboratory UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Carmita J Sanders
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Fungus Testing Laboratory UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - James Mele
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Hongxin Fan
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Marjorie David
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nathan P Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Fungus Testing Laboratory UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Pangging M, Nguyen TTT, Lee HB. Seven Undescribed Aspergillus Species from Different Niches in Korea. MYCOBIOLOGY 2022; 50:189-202. [PMID: 36158044 PMCID: PMC9467543 DOI: 10.1080/12298093.2022.2116158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
An investigation of species of the genus Aspergillus present in arthropod, freshwater, and soil led to the discovery of seven undescribed species in Korea. Based on their morphological characteristics and molecular phylogeny analyses using a combined data set of β-tubulin (BenA) and calmodulin (CaM) sequences, the isolated strains CNUFC IGS2-5, CNUFC YJ1-19, CNUFC WD27, CNUFC U8-70, CNUFC AS2-24, CNUFC S32-1, and CNUFC U7-48, were identified as Aspergillus brunneoviolaceus, A. capensis, A. floccosus, A. inflatus, A. parvulus, A. polyporicola, and A. spelaeus, respectively. In the present study, the detailed morphological descriptions and phylogenetic relationships of these species are provided.
Collapse
Affiliation(s)
- Monmi Pangging
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| | - Thuong T. T. Nguyen
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| |
Collapse
|
5
|
New Species of Aspergillus (Aspergillaceae) from Tropical Islands of China. J Fungi (Basel) 2022; 8:jof8030225. [PMID: 35330227 PMCID: PMC8954917 DOI: 10.3390/jof8030225] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/31/2022] Open
Abstract
Aspergillus species are cosmopolitan and ubiquitous, closely related to human daily life. They are also of food, industrial and medical importance. From the examination of cultures isolated from soil samples collected on tropical islands of China, four new species of the genus were discovered based on phylogenetic analyses and morphological comparisons. Aspergillus xishaensis sp. nov. and A. neoterreus sp. nov. belong to sections Flavipedes and Terrei of subgenus Circumdati, and A. hainanicus sp. nov. and A. qilianyuensis sp. nov. are in sections Cavernicolarum and Nidulantes of subgenus Nidulantes. To accommodate A. hainanicus, a new series Hainanici was proposed. Detailed descriptions and illustrations of the new taxa were provided.
Collapse
|
6
|
Christiansen JV, Isbrandt T, Petersen C, Sondergaard TE, Nielsen MR, Pedersen TB, Sørensen JL, Larsen TO, Frisvad JC. Fungal quinones: diversity, producers, and applications of quinones from Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. Appl Microbiol Biotechnol 2021; 105:8157-8193. [PMID: 34625822 DOI: 10.1007/s00253-021-11597-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Quinones represent an important group of highly structurally diverse, mainly polyketide-derived secondary metabolites widely distributed among filamentous fungi. Many quinones have been reported to have important biological functions such as inhibition of bacteria or repression of the immune response in insects. Other quinones, such as ubiquinones are known to be essential molecules in cellular respiration, and many quinones are known to protect their producing organisms from exposure to sunlight. Most recently, quinones have also attracted a lot of industrial interest since their electron-donating and -accepting properties make them good candidates as electrolytes in redox flow batteries, like their often highly conjugated double bond systems make them attractive as pigments. On an industrial level, quinones are mainly synthesized from raw components in coal tar. However, the possibility of producing quinones by fungal cultivation has great prospects since fungi can often be grown in industrially scaled bioreactors, producing valuable metabolites on cheap substrates. In order to give a better overview of the secondary metabolite quinones produced by and shared between various fungi, mainly belonging to the genera Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium, this review categorizes quinones into families such as emodins, fumigatins, sorbicillinoids, yanuthones, and xanthomegnins, depending on structural similarities and information about the biosynthetic pathway from which they are derived, whenever applicable. The production of these quinone families is compared between the different genera, based on recently revised taxonomy. KEY POINTS: • Quinones represent an important group of secondary metabolites widely distributed in important fungal genera such as Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. • Quinones are of industrial interest and can be used in pharmacology, as colorants and pigments, and as electrolytes in redox flow batteries. • Quinones are grouped into families and compared between genera according to the revised taxonomy.
Collapse
Affiliation(s)
- J V Christiansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - T Isbrandt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - C Petersen
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - T E Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - M R Nielsen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T B Pedersen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - J L Sørensen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - J C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
7
|
MALDI-TOF MS: Foundations and a Practical Approach to the Clinically Relevant Filamentous Fungi Identification. CURRENT FUNGAL INFECTION REPORTS 2021. [DOI: 10.1007/s12281-021-00423-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|